


A Business Case for Software Process Improvement

(2007 Update)

Measuring Return on Investment from Software 
Engineering and Management

A DACS State-of-the-Art Report

DACS Report Number 347616

Contract Number SP0700-98-D-4000
(Data & Analysis Center for Software)

30 September 2007

PREPARED FOR:

Air Force Research Laboratory
AFRL/IFT

525 Brooks Road
Griffiss AFB, NY 13441-5700

PREPARED BY:

Thomas McGibbon
Daniel Ferens

Robert L. Vienneau

ITT Advanced Engineering and Sciences
775 Daedalian Drive

Rome, NY 13441

Distribution Statement A

Approved for public release: distribution is unlimited



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
30 September 2007

2. REPORT TYPE
30 September 2007

3. DATES COVERED (From - To)
 N/A

4. TITLE AND SUBTITLE
A Business Case for Software Process Improvement (2007 Update)

5a. CONTRACT NUMBER
SP0700-98-D-4000

Measuring Return on investment from Software Engineering
And Management

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)
Thomas McGibbon

5d. PROJECT NUMBER
N/A

Daniel Ferens 5e. TASK NUMBER
N/A

Robert Vienneau 5f. WORK UNIT NUMBER
N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ITT Advanced Engineering & Sciences, 775 Daedalian Dr., Rome, 
NY 13441-4909

8. PERFORMING ORGANIZATION REPORT  
    NUMBER

DAN 347616

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Defense Technical information Center DTIC
DTIC/AI AFRL/IF
8725 John J. Kingman Rd., STE 0944 11. SPONSOR/MONITOR’S REPORT 

Ft. Belvoir, VA 22060       NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release, Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The purpose of this revised State of the Art Report (SOAR) is to provide new insights into 
the details necessary to demonstrate from a business perspective the benefits of improved 
software management using software process improvement (SPI) techniques.  SPI has received 
much attention in recent years; however, it has been very difficult to translate benefits 
achieved in one organization to another organization.  The intent of this SOAR is to 
generalize and model the cost benefits one can achieve from SPI efforts.  This revised SOAR 
updates the previous (1999) edition by examining the business implications of some more 
recent SPI practices, including the Capability Maturity Model for Integration (CMMI), agile 
development, and systems engineering. The Data Analysis Center for Software (DACS) has 
recently implemented a new capability on the DACS web site to provide updated information 
about return on investment (ROI results; it is the ROI Dashboard©.  The ROI Dashboard© also 
contains updated information for practices such as inspections, reuse, and secondary 
benefits.  A new Section has been added to this report to describe and explain this new 
capability. It establishes a framework whereby the current methods of performing software 
development can be compared to any proposed improvements.
15. SUBJECT TERMS
SOFTWARE ENGINEERING TOOLS AND TECHNIQUES, CMM, CMMI, ECONOMIC ANALYSIS,SOFTWARE ENGINEERING 
PROCESS, RETURN ON INVESTMENT ANALYSIS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 
OF ABSTRACT

18. NUMBER 
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Thomas McGibbon

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U UU 153

19b. TELEPHONE NUMBER (include area 
code)
315-334-4933



Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18



A Business Case for Software Process Improvement (2007 Update):

Measuring Return on Investment from Software Engineering and Management

Table of Contents

1. INTRODUCTION 7

2. THE DACS ROI DASHBOARD© 11

2.1 Definition of ROI 12

2.2 Getting Started with the DACS ROI Dashboard 16
2.2.1 Box Plots 17
2.2.2 Bar Graphs 18
2.2.3 Text Display 18

2.3 Cautions and Caveats 19

3. LITERATURE REVIEW 23

3.1 Business Value of Software Management 24

3.2 Organizational Results of Process Improvement 26
3.2.1 General Organizational Results of Process Improvement 26
3.2.2 Capability Maturity Model (CMM) 28
3.2.3 Capability Maturity Model Integration (CMMI) 37
3.2.4 Personal / Team Software process (PSP/TSP) 43

3.3 Results of Specific Process 46
3.3.1 Inspections 46
3.3.2 Software Reuse 51
3.3.3 Cleanroom Software Development 56
3.3.4 Agile Development 59
3.3.5 Systems Engineering 64

3.4 Secondary Benefits of Improvement Efforts 65

3.5 Risks From Software Improvement 68

4. DETAILED RESEARCH 71

4.1 Modeling the Cost Benefit of Software Process Improvement 72

4.2 Modeling the Benefits of Specific processes 74
4.2.1 Benefits of Inspections 74
4.2.2 Modeling the Effects of Reuse 76
4.2.3 Modeling the Effects of Cleanroom Software Development 81
4.2.4 Modeling the Effects of Agile Software Development 83

4.3 Modeling Secondary Benefits of Process Improvements 86
4.3.1 Cost Benefit of Improved Schedules 86
4.3.2 Cost Benefit of Reduced Staff Turnover and Better Staff Retention 87
4.3.3 Cost Benefit of Improved Customer Satisfaction 90



4.3.4 Cost Benefit of Reduced Risk on Software Projects 91

4.4 Comparison of Results 95

5. SUMMARY AND CONCLUSIONS 96

5.1 The Financial Benefits of Software Process Improvement 97

5.2  The Secondary Benefits of Software Process Improvement 99

6. ANNOTATED BIBLIOGRAPHY 101

APPENDIX A: INSTRUCTIONS FOR USE OF THE DACS ROI FROM SPI SPREADSHEET MODEL
147

A.1 Introduction 147

A.2 Software Size Estimation 148

A.3 COCOMO Cost Estimation 150
A.3.1 COCOMO P’s Sheet 150
A.3.2 Schedules Sheet 151
A.3.3 Estimates Sheet 152

A.4 Return on Investment from Software Process Improvement 153
A.4.1 ROI Summary Sheet 153
A.4.2 Inspections Sheet 154
A.4.3 Reuse Sheet 154
A.4.4 Cleanroom Sheet 154
A.4.5 SPI Sheet 154
A.4.6 Risks 155



7

1. Introduction

The purpose of this revised State of the Art Report (SOAR) is to provide new insights

into the details necessary to demonstrate from a business perspective the benefits of improved 

software management using software process improvement (SPI) techniques.  SPI has received 

much attention in recent years; however, it has been very difficult to translate benefits achieved 

in one organization to another organization.  The intent of this SOAR is to generalize and model 

the cost benefits one can achieve from SPI efforts.  This revised SOAR updates the previous 

(1999) edition by examining the business implications of some more recent SPI practices, 

including the Capability Maturity Model for Integration (CMMI), agile development, and 

systems engineering. The Data Analysis Center for Software (DACS) has recently implemented a 

new capability on the DACS web site to provide updated information about return on investment 

(ROI) results; it is the ROI Dashboard©.  The ROI Dashboard© also contains updated 

information for practices such as inspections, reuse, and secondary benefits.  A new Section, 

Section 2, has been added to this report to describe and explain this new capability. It establishes 

a framework whereby the current methods of performing software development can be compared 

to any proposed improvements.  In the future, as more data on systems practices such as CMMI 

and systems engineering are collected, the effects on ROI for entire software-intensive systems 

may be included in this report.

This report emphasizes ROI because it is a very popular metric due to its versatility and 

simplicity, and because business managers often use it as a basis for decision making.  To 

calculate ROI, the difference between the benefit (return) of an investment minus the cost of the 

investment is divided by the cost of the investment; the result is expressed as a percentage or a 

ratio. If an investment does not have a positive ROI, or if there are other opportunities with a 

higher ROI, then the investment will usually not be undertaken.  A challenge for SPI efforts is 

that they do incur a cost of investment, and their use must be justified by a projected gain or 

benefit that exceeds the cost.  Sometimes, they must also demonstrate a greater gain and resultant 

ROI than other efforts in a company or organization.  This report will help the reader to do this 

for SPI efforts.  (Section 2 of this report presents a more detailed explanation of ROI.)

More detailed information about ROI for specific SPI areas can be found on the DACS 

ROI Dashboard© web site, which is https://www.thedacs.com/databases/roi/.  While some 

information about the ROI Dashboard© is presented in Section 2 of this SOAR report, detailed 



8

instructions on using the dashboard are available by clicking on the “Overview” link at the end of 

the first paragraph on the Dashboard home page. (Registration is required to view ROI 

information.  It is free; the link is https://www.thedacs.com/forms/register_step1.php.)

This report demonstrates that sound application of software engineering methods by 

software managers can:

 Increase Profitability.  The ROI for software improvement is usually very high.  

According to van Solingen (2004), many organizations have reported an average ROI of 7:1.  

This high ROI is achieved by reducing development costs, rework costs, and turnover costs.  

Product sales increase from higher quality software, penalties turn into bonuses, and repeat 

business increases.  Furthermore, a risk analysis of performing software improvements versus not 

performing the improvements highly favors performing the improvements.

 Reduce software development and maintenance (or support) costs. The cost of 

implementing SPI methods and practices are usually heavily outweighed by the cost savings from 

reduced development costs, and the cost savings resulting from less rework.  The major reduction 

of development costs can be attributed to improved software productivity.  Implementing SPI 

methods also reduces maintenance costs, which often exceed development costs.

 Reduce Cycle Time.  Improvement efforts can reduce typical development schedule 

lengths by 30% to 40%.  This may translate to higher profit because it may allow organizations to 

beat the competition in getting a product to the field, result in more products purchased earlier 

than projected, or result in schedule-related bonuses for early delivery.  Combining improved 

schedules with higher quality, getting better products out sooner, is a winning combination as far 

as customers are concerned.

 Improve quality and customer satisfaction.  Typical software development 

organizations release products with 15% of the defects remaining for the customer to find.  No 

customer is happy with that many problems.  Some SPI methods can reduce post-release defects 

to near zero.  Improving customer satisfaction is shown to result in repeat customer business and 

an improved company image.

 Improve Professional Staff.  SPI improves employee morale, and increases the 

confidence of developers.  It results in less overtime, fewer crises, less employee turnover, and 

an improved competitive edge.  The reduction in employee turnover costs and retraining costs 

can pay for the improvement costs alone.



9

The focus of this report is on SPI and the cost benefits that can be achieved through an 

SPI program.  This paper examines overall organizational results from SPI and the results from 

specific SPI practices.  (This is consistent with the improvement area matrix on the ROI 

Dashboard©.)  The organizational results include the Capability Maturity Model (CMM), the 

Capability Maturity Model Integration (CMMI), and usage of the Personal and Team Software 

Processes (PSP/TSP).  Specific practice results include inspections, software reuse, Cleanroom

software development, agile development, and systems engineering.  This report also examines 

some of the general and detailed benefits, secondary benefits, and risks associated with software 

engineering initiatives.

Section 2 of this report, added to this revised edition, explains ROI and the contents and 

features of the DACS ROI Dashboard©.  The information available from the ROI Dashboard©

can further explain the information contained in this report, provide the latest up-to-date data, 

and provide additional justification information for SPI efforts.

The literature has many documented success stories of cost savings resulting from 

software process improvements. Section 3 of this report summarizes the findings as reported in 

the literature. This Section also explores other writers’ views of the business benefits or value of 

process improvement and software management as well as literature that discusses the secondary 

benefits of process improvement.  There are many secondary benefits discussed in the literature, 

including higher customer satisfaction, improved employee morale, and an improved competitive 

position which are also discussed in Section 3.

In Section 4 of this report, for each of four classes of SPI (inspections, software reuse, 

Cleanroom methodology, and agile development), a spreadsheet model is developed which will 

allow anyone to identify likely cost savings from SPI in his or her organization. This spreadsheet 

is built upon the Constructive Cost Model (COCOMO), a software cost and schedule estimating 

model developed by Dr. Barry Boehm (1981).  An enhanced spreadsheet is also provided to 

provide a framework for addressing the secondary benefits of improvements.

In Section 5 of this report, generalizations about the spreadsheet of Section 4 are made 

and conclusions are drawn from the research performed.  Section 6 includes an annotated 

bibliography.

We recognize that methods other than SPI can have significant improvements and cost 

savings on a software development organization. For example, Boehm (1987) has shown that 



10

utilizing a second-rate (15th percentile) team on a software project requires 4 times (4X) as many 

man months of effort as using a highly skilled (90th percentile) team. Boehm (1987) has also 

shown that investments in programmers’ facilities have been recaptured with improved 

productivity. However, to consistently achieve quality software products utilizing average 

skilled teams, an SPI program is needed.

We also recognize that some people have not believed in the validity of the ROI data in 

the literature.  For example, Fenton (1993) provides a skeptical view of the statistics and ROI 

data reported in the literature.  He shows that anecdotal “evidence” of significantly improved 

quality and productivity are not backed up by hard empirical data, and where hard data exists, it 

is counter to the view of the “so-called” experts.  More recent literature, however, shows that 

data is usually valid and SPI usually does result in improvements.

Appendix A contains instructions for using the attached diskette titled “The DACS 

Return-On-Investment  (ROI) from Software-Process-Improvement (SPI) Spreadsheet Model,” 

containing the Microsoft Excel® spreadsheet which can be used for software size estimation, 

software cost estimation, and ROI from SPI analysis.



11

2. The DACS ROI Dashboard©

The DACS has continued to collect ROI data from open source literature for more than a 

decade after the first edition of this report was issued. Much of the quantitative reported 

improvements for SPI and specific processes are measured against a small number of project 

attributes, such as cost, schedule, productivity, and quality.  DACS efforts have captured, 

codified, and represented these improvements in a common database format. The DACS 

continues to update this database as new data emerges in the open literature.

The DACS ROI Dashboard© takes the next step by providing a web-based set of 

graphical and analytical tools, interfaced to this database.  These tools provide ways for users 

visualize and reason about the reported data.  The ROI Dashboard© is available through the 

DACS website at http://www.thedacs.com/databases/roi/. The DACS website requires 

registration, which is free.

This Section summarizes a few of the key capabilities available from the ROI 

Dashboard©. Figure 2.1 presents the ROI Dashboard© home page.  From this page, DACS users 

can select improvements of interest and how they would like the costs and benefits of such 

improvements displayed. The ROI Dashboard© provides a valuable visual and analytical tool for 

the engineer or manager, wishing to rationalize or justify investments in improvement, to quickly 

assess the extent of improvements that have occurred within other organizations. This tool 

provides still other capabilities and information on other improvements than described in this 

introduction.

If you have observed results data for any improvement and would like to include them in 

the Dashboard, please contact the authors at the DACS, or, better yet, complete the SPI data 

collection survey form accessible by clicking ‘Submit a Case Study’ on the ROI Dashboard home 

page (see http://www.thedacs.com/databases/roi/submit/).  Either way, the DACS will contact

you to follow up on the submittal.



12

Figure 2.1: Selecting Improvements and Display Type from the ROI Dashboard©

2.1 Definition of ROI

This document and the ROI Dashboard report the business benefits of software 

improvements in terms of ROI. ROI, as used in financial analysis, has a precise mathematical 

definition. The term’s usage has also expanded among management. It is a metaphor for 

benefits received as a result of incurring some costs.  Often this metaphoric usage remains 

quantitative. In this report, ROI is used in both the financial analysis sense and as a metaphor. 

Quantitative benefits from SPI and specific methods are measured in terms of ROI under the 

financial analysis definition, productivity, lower project cost, lower cycle times, improved 

quality, decreased rework, and smaller schedule variance.

ROI, in a precise sense, is the internal rate of return of an investment. An investment, 

most generally, can be considered a stream of payments or revenues.  One pays into an 

investment for prospective revenues returned at specified dates in the future. Consider an 

investment that requires payments in or produces revenue at the start of each year.  Let ty ; t = 0, 

1, 2, …, n; be the revenue produced at the start of the nth year. A payment, that is, a cost, is 

represented by a negative value of ty .  Typically, 0y , the revenue at the start of the first year of 

the investment, is negative. The internal rate of return is a rate of interest, r, for which the net 



13

present value of the investment is zero; that is, the internal rate of return solves the following 

equation:

n
n

r

y

r

y

r

y
y

)1()1(1
0

2
21

0








 

Frequently, a simplified formula is used for ROI.  Consider an investment that requires 

one payment at the start and yields revenue at exactly one point in time.  Let V be the value of the 

original investment and let Y be the return at the end of the period. In terms of the above 

definition, the ROI is:

V

VY
ROI




In summarizing the literature, we use the above formula and ignore the precise time 

pattern of payments and yields.  In some documents in the literature, it is challenging to 

determine whether the returns described are with or without the original investment subtracted.

We interpreted this ambiguity in specific articles as best we could.

More broadly, ROI is the improvement gained by the expenditure of some cost.

Improvements described in the literature include increased productivity, lower project cost, 

decreased cycle time, increased quality, decreased rework, and less variance between actual costs 

and schedules and budgeted costs and schedules. The Dashboard accommodates disparities in 

units of measure. For example, project sizes can be measured in Source Lines Of Code (SLOC) 

or Function Points. Cost might be measured in dollars or person-months.  Cycle time need not 

be converted a single time measure like weeks, months, or years. The Dashboard also 

accommodates concerns organizations may have about company-proprietary data; for example, 

some organizations may not want to publish productivity or failure rates. These accommodations 

are made by recording percent improvements when raw data is not available and by separately 

recording units of measurement for raw numbers.

Percent improvements are dimensionless. For example, suppose BP  is the productivity of 

some organization’s software process before implementing some improvement, such as 

achieving assessment at a higher CMM level.  Let AP  be the productivity after implementing the 

improvement.  Then, the percent increase in productivity is:



14

B

BA

P

PP 
100

One can report this percent increase without reporting the productivities before and after 

the improvement.  The productivities before and after the improvements must be in the same 

measurement units for a single data point. Percent increases in productivity, however, can be 

compared across data points even if the raw productivities are measured in different units.

Measures of percentage improvements (not ROI by a strict finance definition) are calculated 

based on measures of:

 Productivity: The amount of output produced per unit input. Software productivity is 

typically assessed in SLOC per staff-day or Function Points per person-month, for 

example. The Dashboard graphs percent increase.

 Quality:  Two measures of quality are used in the Dashboard:

o Defect density: In units such as delivered defects per thousand SLOC or defects 

found during acceptance testing per thousand Function Points.  The Dashboard

graphs percent decrease.

o Percentage of defects found:  In units such as percent of defects found by a 

specified activity or the percent of total defects found before delivery. The 

Dashboard graphs percent increase.

 Rework:  The cost, often measured in the ratio of time or dollars to overall project time 

or dollars, required to alter a component or product to correct a defect. The Dashboard

graphs percent decrease.

 Project Cost: The total amount spent on a project. The Dashboard graphs percent 

decrease.

 Cost of the Improvement:  The total cost required to implement a process improvement.

This usually includes the training cost and the cost to perform the new process (as in 

formal inspections).

 Cycle Time:  The time from inception to product release; the total schedule length for a 

software development project or iteration. The Dashboard graphs percent decrease.

 Schedule Variance:  See following.  The Dashboard graphs percent decrease.



15

Schedule Variance is a measurement used in Earned Value Analysis (EVA), a project 

management methodology to measure progress objectively. The amount of work performed by a 

given date is measured by the budget for the products produced by that date is the Planned Value 

(PV), while the amount of work scheduled by that date is measured by the expenditure budgeted 

to be spent by that date is the Earned Value (EV). Schedule Variance is the difference between 

EV and PV.  Schedule Variance is negative for a project that runs over schedule and positive for 

a work completed ahead of schedule.

The distributions of ROI and percent changes for SPI and specific improvements are presented 

by graphical displays highlighting certain statistics.  These statistics are measures of central 

tendencies and measures of how the data is dispersed about the central tendency:

 Minimum: The smallest value in the sample.

 Maximum: The largest value in the sample.

 Mean: A measure of central tendency. The mean is the quotient of the sum of the values 

divided by the number of elements in the sample.

 Median:  Another measure of central tendency. The median is such that half the sample 

is less than its value. The median and the mean are equal for Gaussian (bell-shaped) 

distributions. The median is less sensitive to outliers and extreme values than the mean.

 Standard deviation:  A measure of dispersion.  The square of the standard deviation is 

the quotient of a certain sum and one less than the number of elements of a sample.  That 

sum is the sum of the squares of the difference between the value of each element of the 

sample and the mean.  The standard deviation is in the same units of measure as the 

elements of the sample.

For Gaussian (bell-shaped) distributions, 68.3% of the population is within one standard 

deviation of the mean, 95.4% is within two standard deviations, and 99.7% is within three 

standard deviations.

 25th Percentile: Also known as the first quartile. The first quartile is such that one 

quarter of the sample is less than its value.

 75th Percentile: Also known as the third quartile.  The third quartile is such that three 

quarters of the sample is less than its value.



16

2.2 Getting Started with the DACS ROI Dashboard

The Dashboard home page (Figure 2.1) presents the user with a choice of process improvements 

and a choice of displays. In the input window on the left, the user selects one or more 

improvement areas of interest.  On the right, the user chooses his or her preferred display type 

(Box Plot, Bar Plot, or Text Display), and then clicks the “Submit” button. The resulting data 

will be presented in the chosen format. Figure 2.2 provides a visual comparison of a box plot 

and bar plot of the same data, while Figure 2.3 provides a sample text display.  All three graph 

types allow the user to drill down to the detailed data and sources, simply by clicking on the box, 

bar, line, point, or the links embedded within the text display. The following subsections provide 

a detailed explanation of each of the three presentation formats.  

Figure 2.2: Sample Box and Bar Plot for the Same Data

Figure 2.3: Sample Text Display

Data in Box Plot Format Data in Bar Graph Format



17

Figure 2.4: Defining a Box Plot

2.2.1 Box Plots

Figure 2.4 presents a graphical definition of a Box Plot, also called a box and whiskers 

plot. A Box Plot displays the empirical distribution of a single variable (such as impact on 

quality). Half of the distribution is in the center box. Whiskers, at the top and bottom of the box, 

show the extent of most of the remainder of the distribution.  Finally, outliers and extreme values 

are plotted beyond the whiskers. Tukey (1977) first described Box Plots.

The Box Plot shows various statistics. Box Plots on the DACS ROI Dashboard© display 

two measures of central tendency, the mean and the median.  Traditional Box Plots do not 

display the mean.  The median is less sensitive to extreme values and outliers; it is also easier to 

interpret for non-Gaussian (non-bell-shaped) and non-symmetric distributions.

The lower and upper edges of the box, known as “hinges”, approximate the first and third 

quartiles of the distribution.  (The median is the second quartile.)  The lower hinge is the median 

of the points less than or equal to the median.  In cases where the first quartile is found by 

interpolating between two data points, the hinge will typically come out as a different 

interpolation.  (Tukey defined hinges for ease of calculation.)  The upper edge is found, similarly, 

as the median of the points greater than or equal to the median. The upper hinge approximates 

W h iske r

W h iske r

B ox

H inge  app rox im a tin g  th ird  q ua rtile

H inge  app rox im a tin g  firs t  qua rtile

M ean

M ed ian

L a rgest o bse rved  va lue  n e ithe r an  o u tlie r  n o r  an  ex trem e  va lue

S m a lle st ob served  va lu e  n e ith er  an  ou tlie r n o r an  ex trem e  va lu e

E x trem e va lue  – g rea te r th an  3  b ox  length s abo ve  th e  h inge  
app rox im a ting  the  th ird  q ua rtile

E x trem e va lue  – g rea te r th an  3  b ox  length s b e low  th e  h in ge  
app rox im a ting  the  firs t qu artile

O u tlie rs  – grea te r  than  1 .5  b ox  len gth s ab o ve  the  h in ge  
app rox im a ting  the  th ird  q ua rtile

O u tlie r – grea te r  than  1 .5  b ox  len gth s be lo w  th e  h in ge  
app rox im a ting  the  firs t qu artile



18

the third quartile. Note that the central half of the distribution is between the two quartiles. The 

inter-quartile range is a measure of the variability of the data.

2.2.2 Bar Graphs

Figure 2.5 presents the defining characteristics of a Bar Graph. The statistics shown on a 

Bar Graph consist of the mean and multiples of the standard deviation. If the distribution were 

Gaussian or bell shaped, most of the distribution would be within a couple of standard deviations 

of the mean. For a Bar Graph, where the bulk of the distribution lies is shown by horizontal 

black lines (not shown in Figure 2.5) representing individual data points. In many ways, the Box 

Plot presents a more articulated picture of the distribution of data than a Bar Graph does. The 

Bar Graph, however, is useful for visualizing standard deviations.

Figure 2.5: Defining a Bar Graph

2.2.3 Text Display

The Text Display, illustrated in Figure 2.3, provides various distribution-free and 

parametric statistics about each attribute (metric) of the improvement area for which data exists.

These statistics consist of the total data points, minimum, maximum, median, mean, standard 

M ean

Sm allest observed  value

Largest observed  value

W
ithin one 

standard deviation

W
ithin tw

o

standard deviations

W
ithin three

standard deviations



19

deviation, 25th percentile, and 75th percentile. The user can click on the hyperlinked metric 

name or the total data points to obtain details about data and data sources.

2.3 Cautions and Caveats

The Dashboard provides an overview of quantitative data reported in the literature on 

software process improvements, including some specific improvements. Table 2.1 shows DACS 

users who have generated graphs and reports from the Dashboard since we have required users 

to register. (Users who revisited the Dashboard in more than one month are only counted once 

in the last column; thus, for some rows, the entry in the last column is less than the sum of 

monthly columns.) This data suggests practitioners find the data in Dashboard more worth 

exploring than academics (professors and students) do.  Furthermore, 61% (94 out of 154) of the 

users are in management. An overview of quantitative business benefits of software process 

improvements seems to be of interest to executives, managers, and their staff.

Role May 2007 Jun 2007 Jul 2007 Aug 2007 All

President 0 1 0 0 1

Vice President 1 0 1 0 2

Metrics Mgr and 6 Sigma MBB 0 1 1 0 2

Senior Mgmt 3 3 11 2 18

Program/Project/Eng. Mgr. 5 8 24 21 53

Acquisition Program Analyst 0 0 1 0 1

Research and Development 0 4 2 1 6

Consultant 0 0 1 0 1

SQA/SQE Mgr. 3 6 6 3 17

Software Test Engineering Mgr. 1 0 0 0 1

Software/Systems/Program Analyst/Engineer 3 4 8 7 20

SQA Analyst/Engineer 3 4 4 3 14

Academia/Professor 0 2 0 0 2

Student 0 0 0 1 1

Miscellaneous and Unknown 1 4 5 5 15

Total 20 37 64 43 154

Table 2.1: Users of the ROI Dashboard© by Role and Month

The Dashboard methodology accommodates the range of statistical rigor reported in 

software engineering literature. Some literature reports on controlled experiments, justifying 



20

statistical hypothesis testing of the effects of the “treatment”, that is, a specific improvement in 

software technology or process. Other literature is more observational, with values without the 

treatment being drawn from organizational or industry averages. Some papers report data from 

single projects, while others report data from a single organization or from surveys of many 

organizations.  Not all the studies in such literature can be quantitatively combined or aggregated 

using rigorous statistical techniques, described as meta-analyses.

Social science and medical research are probably the most common application areas for 

meta-analysis.  Hayes (1999) and Miller (2000) illustrate meta-analysis in software engineering 

with small case studies.  Effect sizes are typically reported in meta-analyses on a different scale 

than that used in the Dashboard. A typical measure is the difference between the control and 

treatment groups, normalized by some estimate of the standard deviation. Other measures 

include statistical significance levels and odds ratios. Deviations in the odds ratio from unity 

indicate how much more or less likely an effect is to be observed in the treatment or control 

group. These measures allow the meta-analyst to calculate how much random variation would be 

expected in measures of effect sizes among the individual studies if the treatment had no effect. 

These calculations account for differences in sample sizes among the studies. Some approaches 

account for variability in quality and heterogeneity in measures of effects across the studies.  If 

the observed random variation among the studies is greater than that to be expected if the 

treatment were ineffective, the meta-analyst can reject the null hypothesis of no effect at a 

controlled statistical significance level. One can also estimate a confidence bound for the overall 

effect size and test whether the populations sampled by the individual studies vary among them.

Most of the literature summarized in the Dashboard lacks characteristics needed to 

support these meta-analytical techniques. Many of the studies are not controlled experiments, 

and sample sizes, standard deviations, and statistical significance levels are frequently not 

reported. The Dashboard methodology of reporting effect sizes in terms of percent improvement 

allows visualization of the data taken from this wider range of studies than can be accommodated 

in a statistically rigorous meta-analysis.  How much further one would want to push the analysis 

is a matter of judgment for the Dashboard user. Galin and Avrahami (2005), for example, 

statistically test the impact of transitioning from one CMM level to another based on data also 

reported in the Dashboard. As a minimum, the Dashboard provides a guide to literature on 

quantitative assessments of software process improvements.



21

The Dashboard does not capture all differences in business aspects of process 

improvements. In particular, the scale of investments and the quantities of benefits are not 

captured in a financial measure of ROI.  For example, implementing formal inspections or peer 

reviews on a single project will require a smaller investment than successfully completing an 

organization-wide CMM or CMMI assessment. The total return for implementing formal 

inspections will, however, typically be smaller than for CMM SPI, even though the mean ROI, 

expressed as a percentage, for formal inspections exceeds the mean ROIs for CMM and CMMI.

The Dashboard user should be aware that data is aggregated into the improvements in the 

database. The data for some process areas contains literature on diverse methodologies. For 

example, data on Agile Programming includes eXtreme Programming (XP), the Dynamic 

Systems Development Method (DSDM), and other methodologies. Sources of data on CMM 

include, for example, Raytheon Software Systems Laboratory transitioning from the Initial Level 

to the Defined Level, as well as Motorola transitioning from the Repeatable Level to the 

Optimizing Level. Perhaps ROI varies among agile methodologies or depends on exactly from 

and to which CMM level an organization transitions. Another issue arises in decomposing the 

benefits shown in the literature to the different elements that comprise a process. Often such 

decomposition is not possible with the Dashboard data, although some of the literature is 

suggestive.  For example, many of the controlled experiments on XP focus on pair programming, 

only one of the XP practices. As another example, the implementation of peer reviews, a process 

with high ROI, is just one of thirteen Key Process Areas required to achieve the CMM Defined 

Level. When an article reports an organization as implementing more than one improvement, 

without decomposing ROI data by improvement, the Dashboard reports that data for both 

improvements.  Despite these issues, some level of aggregation is needed for the current state of 

the literature to obtain sample sizes large enough to exhibit statistical variation. Even so, the 

DACS was only able to locate limited data for some improvement areas.

The source of the data in the Dashboard is open literature, concentrating empirical 

software engineering and process improvement. Journals in which articles were found include 

Communications of the ACM, CrossTalk, IBM Systems Journal, IEEE Software, IEEE 

Transactions on Software Engineering, Journal of Systems and Software, Software Practice and 

Experience, and Software Process – Improvement and Practice. Conferences in which articles 

with SPI ROI data were found include conferences sponsored by the Software Engineering 

Institute; Software Engineering Process Group (SEPG) conferences; and conferences dedicated 



22

to specific improvements, such as agile programming.  Some data came from a DACS survey, 

and some from textbooks, where appropriate.



23

3. Literature Review

This report presents a business case for performing software process improvement. The 

primary emphasis of the literature in this area focuses on benefits achieved from increased 

productivity and decreased rework - the primary benefits. Literature addressing this subject area 

discusses such elements as cost savings from process improvements, ROI, improved 

productivity, and improved cycle times1 from process improvements.  The literature in this area 

is divided into five categories:

 Literature that discusses the business value of software engineering and 

engineering management

 Literature that presents results from organizations that have invested heavily in 

SPI using processes such as the Capability Maturity Model (CMM), the Capability 

Maturity Model for Integration (CMMI), and Personal Software process / Team 

Software process (PSP/TSP), and shows the collective benefits, risks, and lessons 

learned from applying software management techniques.

 Literature that addresses specific process improvements that resulted in significant 

savings or benefits to organizations. Two specific process improvement areas 

dominate the literature: software inspections, and software reuse.  Three other 

specific areas, Cleanroom software development, agile methods, and systems 

engineering, have not received as much attention in the literature, but have shown 

some impressive results in cost savings and quality improvements over the entire 

product life cycle.

 Literature that indicates there are also many secondary benefits and other factors 

which need to be considered in examining and measuring software improvement 

from a return on investment perspective.

 Literature that discusses risks and other factors which need to be considered.

                                                
1 Cycle time is defined as the time from the definition of product requirements to release to the customer.



24

3.1 Business Value of Software Management

The first class of literature relates to articles that discuss how to measure the value or 

return on investment from applying software engineering or software management principles, 

such as SPI.  Managers are usually required to show that their company’s investment in SPI is 

profitable and is in line with their business strategy. 

Johnson (1997) described the Cohen Act of 1996 (the Clinger-Cohen Act, Division E of 

the FY96 Defense Authorization Act, Public Law 104-106), in which Information Technology 

(IT) is defined as:

"Any equipment, or interconnected system or subsystem of equipment, that is used in the 

automatic acquisition, storage, manipulation, management, movement, control, display, 

switching, interchange, transmission, or reception of data or information by the executive 

agency.  It includes computers, ancillary equipment, software, firmware and similar procedures, 

services (including support services), and related resources.  It does not include any equipment 

that is acquired by a Federal contractor incidental to a Federal contract."

The Cohen Act defines a set of acquisition and management practices needed to build the 

IT infrastructure outlined in the 1993 National Performance Review (NPR).  The 1993 NPR 

concluded that investments in IT within the United States will make it possible to reduce waste, 

increase efficiency, improve customer satisfaction, and lower costs. Wise adaptation of IT, as 

noted in the article, can substantially improve mission performance and reduce costs.  However, 

poor management practices, especially in the acquisition of software, have caused agencies to fail 

to reap the benefits of IT.

Strassman (1990) examined the value of IT to business.  In his book, he examines many 

studies and concludes that very little is known about measuring the value of information 

technologies, regardless of any measure of excellence.  He believes there is no known correlation 

of the value of IT to business because IT is not an independent variable.  He concludes that 

information technology is not a direct cause of profitability, but a contributor to profitability.  

The author derived a new value-added metric, Return-on-Management (ROM), which is heavily 

correlated to the profit companies make.  He argues that ROM is a more suitable measure than 

Return on Investment (ROI) or Return on Assets (ROA) in evaluating investments in IT because 

ROM focuses on the productivity of management.  The author also noted that the business value 

of IT is the present worth of gains reflected in business plans when you add IT, which equals the 

difference of the business plan when you add IT and the business plan without changes to IT.  



25

The author believes risk analysis of IT investments is a very important aspect of IT selections.  

According to Strassman, "Risk analysis is the correct analytical technique with which one can 

examine the uncertainty of Information Technology investments prior to implementation."  He 

believes that "By making the risks of technology more explicit, you create a framework for 

diagnosing, understanding and containing the inherent difficulties associated technological and 

organizational innovation."  Because of this argument, some of the metrics proposed in this paper 

are based on risk analysis techniques.  He further suggests other measurements of business value 

from IT: gains in market share, better prices, reduced inventories, or highly motivated employees.

ROI measures for evaluating IT are discussed by Violino (1997).  Violino stated that 

management often has difficulty computing ROI from IT.  The author polled 100 IT managers to 

understand the importance of ROI calculations in IT investments in their organization.  Of those 

polled, 45% require ROI calculation, 80% say ROI is useful, only 20% have formal ROI 

measures, and 25% have plans to adopt ROI measures in the next 12 months.  He believes that 

some new "intangible" ROI measures are starting to appear such as product quality off the 

assembly line, customer satisfaction after an interaction, and faster time to market.  The author 

contends that these measures reflect a company's real sources of value and are what customers 

truly care about.  According to Violino, the timing of investing in IT is another intangible IT ROI 

factor.

Brynjolfsson (1993) examined why there is such a shortfall of evidence about 

productivity increases from Information Technology.  Since the 1970s, when corporate 

investments began in technology, productivity for the production sector has increased; however,

productivity for the service sector has decreased with investments in IT.  In this article he 

addresses four possible explanations for this phenomenon: mismeasurement of outputs and 

inputs, lags due to learning and adjustment, redistribution and dissipation of profits where IT 

may only benefit certain areas (where IT rearranges the shares without making it any bigger), and 

mismanagement of information and technology.  The author believes the major problem is due to 

mismeasurement.  For example, if a company decides to offer many varieties of a product, its

productivity appears to be lower than a company that only offers one kind.

Within the software process improvement community, McGarry and Jeletic (1993) have 

identified five steps that are necessary to determine the benefits of process improvement: (1) set 

goals for what is to be improved, (2) establish a basic understanding of an organizations current 

software process and product, (3) invest in change, (4) measure the effects of the change to 



26

determine if any improvement has been achieved, and (5) measure the ROI by (a) determining 

what resources have been expended, (b) establishing what improvements, both qualitative and 

quantitative, have been achieved, and (c) determining the difference between the investment 

made and the benefits obtained.

Harrison, et al. (1999) discussed financial measures that may be used to make a business 

case for SPI.  Present value methods such as net present value, internal rate of return, and 

profitability indexes can be useful in assessing the benefits of SPI efforts.  Risk assessment 

should be considered in computations.  

Reifer (2002) showed that building an effective business case for SPI must be based on 

quantitative assessments. Justification must be based on sound business rationale and not on 

technology alone. Reifer describes the various tools for business case analysis, such as cost 

benefit analysis and investment opportunity analysis, and includes several case studies to show 

how these tools can be used for SPI analysis and determining ROI.

Tockey (2005) discussed a multitude of factors that must be considered in making 

technical software decisions based on business considerations.  The ROI for software activities, 

including SPI, must consider factors such as interest, inflation, depreciation, cost accounting, 

income taxes, and estimating uncertainty.  Like Reifer, Tockey emphasizes the need to align 

activities such as SPI with business objectives.

In summary, business considerations will determine whether a company or organization 

will determine whether to invest in SPI and how much to invest.  The remainder of this paper 

will show that it is usually quite profitable to invest in SPI; however, the amount invested and the 

method or methods selected will vary with the needs of the company or organization. 

3.2 Organizational Results of Process Improvement

Process improvement efforts have provided immense benefits to many organizations.  

Some of the general benefits to organizations are now discussed, and some benefits from more 

particular areas, such as using the CMMI, are now explained.

3.2.1 General Organizational Results of Process Improvement

Several organizations have reported overall results of using SPI without referring to a 

specific area such as CMM or PSP/TSP.  For example, Dion (1993) reported a 7.7:1 return on 

investment ($580 Thousand invested versus $4.48 Million saved in rework costs) and a 2 times 



27

(2X) increase (130% per year for 4.5 years) in productivity from Raytheon’s SPI efforts. 

Raytheon focused on development of, and compliance with, the software engineering 

development policies and procedures, training of engineers in the development methodology, 

application of advanced software development and process tools, use of formal inspections and 

the creation of a process (metrics) database. Raytheon computed the benefit of improvements by 

differentiating the costs into the categories of doing it right the first time versus the cost of 

rework. Based on their SPI, Raytheon has eliminated $15.8 million in rework in less than 5 years 

(41% of project costs before SPI program versus 11% after the SPI program). Other benefits 

resulting from their SPI program are that employees feel the company wants them to do a good 

job, higher employee morale, less absenteeism, lower attrition rates, and fewer nights and 

weekends required by employees.  Raytheon has won two new projects and has earned a $9.6 

million schedule incentive bonus because of their SPI program.

Curtis (1995) concluded that software process improvement works with a measured ROI 

of 6:1, a 2X or 3X productivity improvement and nearly a 100X reduction in post release defects. 

He points out that it is difficult to measure cost benefits from process improvements in immature 

organizations because immature organizations rarely have good cost data.  He claims that the 

first benefit resulting from SPI is the ability to meet schedule. For example, Schlumberger 

improved on-time delivery from approximately 50% of its projects to 99% of its projects in less 

than three years through process definition and control, and improved project planning and 

control. By use of software quality assurance, post release defects also dropped from 25% of 

total defects to 10% in less than three years.  Through use of the CMM, Hughes has learned that 

its cost estimates are more credible in negotiations, the effect of changing requirements is 

predictable, and there is less overtime and fewer crises in the software organization. 

As shown in Table 3.1, Jones (2000) documented the per employee cost of software 

process improvement and identifies seven stages through which an organization moves on its 

way to maturity. During baseline assessments and benchmarking, which Jones calls “Stage 0”, 

organizations perform a formal process assessment and establish a quantitative baseline of 

current productivity and quality levels. In Stage 1, software managers are trained in planning, 

sizing, estimating, tracking, measurement, and risk analysis. Stage 2 concentrates on the 

software development processes to be followed. Stage 3 is acquisition of improved tools and 

exploration of new technologies. Stage 4 addresses the organization and infrastructure of the 

organization. During stage 5, an effective reuse program is established. Stage 6, the final stage,



28

involves achieving leadership, through acquisitions, in a chosen specialization. The range of per 

employee costs to achieve each of these stages is a function of the company size, with larger 

companies incurring greater costs.

Stage Focus at This Stage Minimum Cost of 

SPI/Employee

Maximum Cost of 

SPI/Employee

0 Baseline Assessments $100 $250

1 Management Methods $1,500 $5,000

2 Software Process & Methodologies $1,500 $4,500

3 New Tools & Approaches $3,000 $8,000

4 Infrastructure/Specialization $1,000 $6,500

5 Reusability $500 $6,000

6 Industry Leadership $1,500 $4,500

Total SPI $9,100 $34,750

Table 3.1: Costs of Software Process Improvement (Jones, 2000)

Depending on the size of the company, Jones believes improvement can take between 26 

calendar months for companies of fewer than 100 people and 83 calendar months for companies 

of more than 10,000 people with an ROI range of 3:1 to 30:1.  SPI can result in a 90% reduction 

in software defects, a 350% productivity gain and a 70% schedule reduction. The largest ROI 

does not occur until Stage 5 is attained.

3.2.2 Capability Maturity Model (CMM)

During the late 1980s and early 1990s, The Software Engineering Institute (SEI) at 

Carnegie Mellon University developed and, later, enhanced a five-level evolutionary process 

model of the capabilities of software development organizations called the Capability Maturity 

Model (CMM).  According to this model, described by Humphrey (1989), organizations begin at 

a chaotic initial level and then progress through repeatable, defined, managed, and, finally,

optimizing levels.  Except for the initial level, each level of the model has defined key process 

areas (KPAs) that identify those areas on which the organization must focus on to raise its 

software process to that level. The CMM was finalized in 1991 by the SEI, and a number of 

reports and papers have been written since then which identify the costs and payoffs from process 



29

improvement employing this model. Hayes (1995) has observed that moving from level 1 to 

level 2 of the CMM requires, on average, 30 months, and moving from level 2 to level 3 requires 

25 months.

Humphrey (1991) was one of the first to publish benefits from using the SPI method he 

helped to develop.  He reported on results of SPI at Hughes Aircraft.  Hughes concentrated on 

improvements in quantitative process management, process group formation, software quality 

assurance, training, and reviews. Hughes has saved $2 million annually from these 

improvements on an investment of $445,000. Hughes has noticed an improved quality of work 

life with fewer overtime hours and less employee turnover. The company’s image has also been 

enhanced because of these improvements.

At Tinker Air Force Base (AFB), Lipke (1992) reported a ROI of 6.35:1 ($462,100 

invested and $2.935 million returned) from improvements recommended in their first CMM 

appraisal. Lipke believes that the necessary ingredients for success in SPI are leadership by 

senior management, recognition from everyone that process improvement is their job, and visible 

progress.

Wohlwend (1993) reported results from the SPI programs at Schlumberger, an 

international company doing software development at multiple facilities worldwide. They too 

performed an SEI CMM assessment and made improvements based on this assessment. 

Schlumberger concentrated on improvements in project management, process definition and 

control, project planning and control, and training. They began managing their requirements 

better, resulting in 54% fewer validation cycles (34 versus 15 cycles) before product release.

Productivity doubled because there was less rework. On-time delivery of software increased 

from 51% of the projects to 94% in less than three years. The number of post release defects was 

reduced from 25% of total defects to 10% in the same time period. Wohlwend observes that 12 

to 18 months were required before significant improvements were noticed. He points out that 

instituting process change is very difficult on existing projects with existing schedules.

Herbsleb (1994) provided statistical results as reported by 13 organizations (both 

companies and DoD organizations) to show what benefit or value could be gained by 

organizations involved in CMM-based SPI.  The findings by Herbsleb, as shown in Table 3.2, 

primarily focus on organizations that have improved from CMM Level 1 to Level 2 or Level 2 to 

Level 3.  The costs shown are primarily attributed to the cost of such things as an organization’s 

Software Engineering Process Group (SEPG), the cost of assessments and the cost of training.  



30

Productivity gains were primarily attributed to better requirements elicitation, better software 

management, and incorporation of a software reuse program.  Gains in early detection of defects 

and reductions in calendar time were primarily attributed to reuse.  The number of years 

organizations had been involved in doing software process improvement ranged from 3.5 years to 

6 years. There was no apparent correlation between years of SPI and ROI.

Number
of

Organizations
Median Smallest Largest

Cost per 
Software Engineer 

per Year
5 $1,375 $490 $2,004

Productivity 
Gains per

Year
4 35% 9% 67%

Gains in Early
Detection of

Defects
3 22% 6% 25%

Reduction in
Calendar

Time
2 19% 15% 23%

Reduction in
Post Release

Defects
5 39% 10% 94%

Return
on

Investment
5 500% 420% 880%

Table 3.2 Improvements from Software Process Improvement (Herbsleb, 1994)

NASA’s Software Engineering Laboratory (Basili, 1994 and McGarry 1993), in a 7 year 

period, has reduced its cost of software development by 55%, decreased its cycle time by 40% 

and reduced its post release defect rate by 75%. This has been achieved primarily through 

software reuse (software taken in its entirety).  The Software Engineering Laboratory (SEL) takes 

a different approach than the CMM to improvement; whereas the CMM focuses on 

improvements in process, the SEL emphasizes improvements in software product based upon the 

SEL’s Experience Factory.  However, the SEL recognizes that the CMM is an excellent model of 

process changes that could be selected to attain product improvement.



31

The Boeing Space Transportation Systems (STS) Defense and Space Group's process 

improvement efforts (Yamamura and Wigle, 1997) have been rewarded with a CMM Level 5 

rating by the SEI.  Boeing's Continuous Quality Improvement (CQI) focused on productivity 

increase and cycle-time reduction; where some processes reduced cycle time by 50%. Initially 

70% of all defects were found during verification & 19% during validation.  After peer review 

inspections were introduced, most defects eliminated before testing.  Initially 89% of all defects 

were found during development, with 11% not found; software processes now find nearly 100% 

of all defects.  Inspections increased the design effort by 25% (4% of total development) which 

reduced rework during testing by 31%.  So a 4% increase in effort returned 31% reduction in 

rework for 7.75:1 ROI.

Motorola's (Diaz and Sligo, 1997) successes in achieving CMM Level 5 have also been 

documented.  Motorola uses quality, cycle time, and productivity to evaluate their programs 

because this is what they believe customers value.  They use a Six Sigma Quality focus that looks 

at reject rates as low as a few per million.  Their goal is to achieve a 10X reduction in product 

cycle time to introduce new products quicker.  Each level increase of the CMM improves quality 

by 2X.  Higher maturity projects have a better schedule performance index.  Defect injection rate 

is roughly 1/2 for each level of increase; thus, rework for a CMM Level 2 project is 8X that of a 

level 5 project.  Productivity also improves with increasing maturity level, but a noted decrease 

in productivity between level 2 and 3 appears to be a side effect of asking people to do too many 

things differently at level 3.

Krasner (1997) cited case studies from several companies who realized benefits from 

embarking on an SPI program.  Motorola India Electronics attained CMM Level 5 in 1993, and 

realized a 3.5X improvement in productivity in advancing from CMM Level 3 to Level 5, as well 

as a 40% reduction in cycle time and significant reductions in defects and rework needed.

Millot (1999) reported on ROI as a result of Thomson-CSF as they advanced from CMM 

Level 1 to CMM Level 2 and, later, to CMM Level 3.  The Return-on-Investment (Cost 

Savings/Cost of Improvement) was a 4.3 ratio measured after the improvements to CMM Level 

2, and a 3.75 Ratio measured after the improvements to CMM Level 3.  There were also 

improvements in defect reduction and estimating accuracy.  Oldham, et al (1999) measured 

improvements from progressing from CMM Level 1 to CMM Level 3 for operational flight 

programs managed at Ogden Air Logistics Center, Utah.  The change in cycle time (the time 

from inception to product release) and cost of development both decreased by 70% after the 



32

improvements; the number of defects decreased from 0.1 Defects/KSLOC measured before the 

improvements and 0.0 Defects/KSLOC after the improvements; and the ROI (Cost Savings/Cost 

of Improvement) was 19X measured after the improvements.

In a related study, Walter (1999) presented the results of Oklahoma City Air Logistics 

Center’s achievement of CMM Level 4.  Total development time was 13 Months measured 

before the improvements and 12 Months measured after the improvements (from CMM Level 2 

in 1993 to CMM Level 4 in 1996).  Number of defects observed per unit output was 3.3 Defects 

per KSLOC measured before the improvements and 0.3 Defects per KSLOC measured after the 

improvements (also from CMM Level 2 in 1993 to CMM Level 4 in 1996).  The overall cost 

(investment) of the improvement was 6 Million dollars measured after the improvements (over 

entire Software Process Improvement from 1989 to 1998), but total savings to the organization 

was 50.5 Million dollars measured after the improvements, resulting in an ROI of 742 % 

measured after the improvements.

Porter and DeToma (1999) reported that GTE participated in the 1994 SEI return on 

investment (ROI) study by providing actual program data.  For the five-year period of the study, 

the results showed that productivity increased 37 percent in terms of source lines of code/hour, 

error reductions netted 55 percent less defects/thousand source lines of code, and the overall SPI 

ROI was 6.8. An internal division ROI study conducted in 1995 found similar results with their 

ROI being 7.8.  Other cost reductions have been seen throughout the corporation. The average 

software defect rate during system integration and test has been significantly reduced over time. 

Within one division, the level of formal quality assurance support has dropped from being 2.2 

percent of the organization (based on head count) to under 1.8 percent (almost a 20 percent 

reduction). In 1997 that division tailored its software quality assurance (SQA) activities, taking 

advantage of the maturity of its peer review process, thereby reducing its SQA costs by 50 

percent on its programs.  In all cases, the improvements in GTE’s software process have 

increased quality while reducing costs, thereby reducing time to market.

Jarzombek (2000) summarized the results of CMM improvements across several Air 

Force programs.  The number of defects that are found after release decreased by 39 to 84 %.  

The change in cycle time (the time from inception to product release) decreased by 19 to 23 % 

measured after the improvements.  Software development productivity increased by 35 to 75 % 

measured after the improvements, primarily due to less rework, and software operations and 



33

maintenance costs decreased by 30 to 55%.  The Return-on-Investment (Cost Savings/Cost of 

Improvement) was 400 to 1900 % measured after the improvements.

Pipp (2000) reported on the results of Raytheon Missile Systems advancing from CMM 

Level 2 to CMM Level 4.  They experienced a 144% increase in productivity and a 6:1 ROI 

resulting from the improvements.  They also won a greater percentage of their bids.  The 

company determined that attaining the next CMM Level, Level 5, was a worthwhile goal based 

on these successes.  Harter, Krishnan, and Slaughter (2000) reported on the results from the 

Navy’s SPAWAR Systems Center as they progressed to CMM Level 3.  They compared testing 

for two versions of a product, one of which was done while SPAWAR was still at CMM Level 1 

and the other after they attained CMM Level 3.  The number of defects found during test phases 

was 221 measured before the improvements to CMM Level 3, and 64 measured after the 

improvements.  Required effort during the test phase was 12 staff months measured before the 

improvements and 8 staff months measured after the improvements.  The effort required to repair 

defects discovered during testing was 57.8 staff months measured before the improvements and 

17.3 staff months measured after the improvements.

Pitterman (2000) reported on the improvements of Telecordia Corporation as they 

advanced from CMM Level 3 to CMM Level 5.  The number of defects observed per unit output 

was 120 post-release defects per thousand Function Points measured before the improvements 

and 3 post-release defects per thousand Function Points measured after the improvements  Major 

software releases that are on time were 91 % measured before the improvements and 99 % 

measured after the improvements.  The resources needed to test a system were 0.62 dollars per 

SLOC measured before the improvements and 0.50 dollars per SLOC measured after the 

improvements.

Goyal et al (2001) reported on the positive results of IBM Global Software services in 

India attaining CMM Level 5.  The number of “non-conformances” per project was reduced by 

about 15%.  The reported ROI (cost savings/cost of improvement) was 5.5 from performing the 

training and other activities needed for improvement.

Pitts (2001) reported on the results of Northrop Grumman, Electronic Sensors and 

Systems after they attained CMM Level 4.  The change in Software Development Productivity 

was a 40 % increase measured after the improvements.  Change in the quantity of defects that are 



34

found after release decreased by 35% after the improvements.  Finally, the Return-on-Investment 

(Cost Savings/Cost of Improvement) was 440 % measured after the improvements.

Bowers (2002) reported on improvements from the F/A 18 Advanced Weapons 

Laboratory when they reached CMM Level 4.  Defect density was very low, 3.8 defects per 

KSLOC, down from 13.5 before the improvements.  Productivity in the design phase was 3.45 

man-hours per SLOC, down from 15.7 before the improvements.  Design phase cost was $200 

per SLOC, down from $725 before the improvements.  Life-cycle cost was $400 per SLOC, 

down from $1,170 before the improvements.  The number of test flights was 0.6 flights per 

KSLOC, down from 3.1 before the improvements. 

Diaz and King (2002), in a study they performed at General Dynamics Decision Systems, 

showed that each higher CMM level of software maturity results in improved software quality 

and productivity.  In progressing from Level 2 to Level 4, defect density, a measure of software 

quality, was reduced by a factor of almost four, and productivity improved by 90%.  Also, ROI 

improved by 167% from Level 2 to Level 3, and 109% from Level 3 to Level 4.  In progressing 

from Level 4 to Level 5, the differences were not as marked; productivity did improve by about 

50% compared to Level 4, but defects were only reduced by 16% and ROI only improved by 

14%.  This may have been due to the types of projects being studied, however, and progressing 

from Level 4 to Level 5 does show improvements.

Paulk and Chrissis (2002) published the proceedings of a high maturity workshop with 

presentations from 27 different organizations on how attaining higher CMM ratings has helped 

them in the areas of increased productivity, reduced costs, defect reduction, improved estimating 

accuracy, on-time delivery, and ROI.  For example, for Tata Elxsi Ltd., the number of defects 

observed per unit output was 3 defects / KLOC measured before progressing from CMM Level 4 

to Level 5, and 0.75 defects / KLOC measured after Level 5 was achieved.  For Lockheed Martin 

Management Data Systems, software development productivity improved 13 % after progressing 

from CMM Level 4 to Level 5.  For Mastek Ltd., rework costs as a percentage of development 

costs was 3.9 % measured before progressing from CMM Level 4 to level 5, and 2.1 % measured 

after achieving CMM Level 5.

In response to a DACS Data Collection Survey (2003), Goldman Sachs reported a 50% 

productivity improvement, a 90% schedule reduction, and a 1.6 to 1 ROI from using the CMM.  

HQ USAF reported a defect reduction of 75%, an ROI of 7.5 :1, and a a productivity improvement of 



35

30%, from using the CMM.  Urioste (2004) reported on the improvements at Lockheed Martin 

developing the software for the Tomahawk Missile System.  When they advanced from CMM 

Level 4 to CMM Level 5, software development productivity was 30 % greater, development 

costs decreased by 20%, and the cost to remove defects decreased by 15% after the 

improvements.

Table 3.3 summarizes the results of all studies included in the DACS ROI 

Dashboard© to date for CMM.  Although there were a few negative results for productivity, 

cycle time, and defect reduction, using the CMM gave overall positive results in all areas.

Metric Data 
Points

Minimum Maximum Median Mean Standard
Deviation

25th 
Percentile

75th 
Percentile

ROI 18 0.14 ratio 19 ratio 6 ratio 5.9 ratio 3.99 ratio 4.3 ratio 6.8 ratio
Productivity 29 5% 

decrease
350% 
increase

30% 
increase

76.83% 
increase

96.28% 
increase

15.5% 
increase

100% 
increase

Project Cost 2 18%
decrease

20% 
decrease

19% 
decrease

19% 
decrease

1.41% 
decrease

18% 
decrease

20% 
decrease

Improvement 
Cost

2 2% of 
total effort

3.15% of 
total effort

2.58% of 
total 
effort

2.58% of 
total 
effort

0.81% of 
total 
effort

2% of 
total effort

3.15% of 
total effort

Cycle Time 14 19% 
increase

90% 
decrease

38% 
decrease

36.94% 
decrease

34.56% 
decrease

8% 
decrease

70% 
decrease

Schedule 
Variance

10 50% 
increase

98% 
decrease

46% 
decrease

43.3% 
decrease

40.73% 
decrease

33% 
decrease

67% 
decrease

Quality (% 
of defects 
found)

3 90% 
defects 
found

100% 
defects 
found

94% 
defects 
found

94.67% 
defects 
found

5.03% 
defects 
found

90% 
defects 
found

100% 
defects 
found

Quality (% 
defect 
reduction)

26 -6% 
defect 
reduction

100% 
defect 
reduction

50% 
defect 
reduction

48.62% 
defect 
reduction

32.03% 
defect 
reduction

26% 
defect 
reduction

72% 
defect 
reduction

Rework 6 28% 
decrease

73% 
decrease

36% 
decrease

41.5% 
decrease

16.71% 
decrease

30% 
decrease

46% 
decrease

Table 3.3: Results of CMM Usage from the ROI Dashboard©

The box charts from the ROI Dashboard© in Figures 3.1, 3.2, and 3.3 show the

effects on ROI, productivity, and defect reduction respectively.  For ROI in Figure 3.1, Ogden 

Air Logistics Center experienced a 19:1 ROI when they advanced from CMM Level 2 to Level 5 

in a 4-year period.  All 18 organizations reported a positive ROI, with an average of 5.9:1.  The 

lowest was 1.14:1 from an agency which had advanced from CMM Level 4 to level 5; however, 

this was due to their reaching Level 5 very quickly after Level 4, and the effective annual ROI 

would have been much greater.  The data suggests that an organization using the CMM as an SPI 

can expect an ROI between 4:1 and 7:1.



36

Figure 3.1: ROI Box Chart for CMM

Figure 3.2 shows that one organization, Motorola India, achieved an increase in 

productivity of 350% in LOC per person-day when they advanced from CMM Level 3 to Level 5 

in a period of 3 years.  The average was about 75%.  The lowest was a near-zero increase from an 

organization that advanced from CMM Level 3 to Level 4 in a short time.  This same 

organization, however, experienced an overall increase of 2.9:1 from Level 2 to Level 5, and the 

near-zero result was in part due to the quick transition from Level 3 to Level 4; the Level 4 

advances were not realized until they reached level 5.  Also, the same organization realized 

significant reductions in number of defects and rework required when they advanced from CMM 

Level 3 to Level 4.  The data suggests that an organization using CMM as an SPI can expect so 

see productivity improvements between 15% and 95%.

Figure 3.2: Productivity Box Chart for CMM



37

In Figure 3.3, the best defect reduction result was from Ogden Air Logistics Center, the 

same organization that achieved the best ROI rating from the CMM.  They went from 0.1 defects 

per KSLOC to 0.0 defects per KSLOC for delivered products.  The defect measure used was 

quality deficiency reports, which are no longer reported.  The average improvement was a 48% 

defect reduction.  One company actually had a slight increase in defects when they advanced 

from CMM Level 3 to CMM Level 5; however, their productivity did improve, and they did 

experience significant reductions when they advanced from CMM level 5 to CMMI Level 5, the 

topic of the next Section (Section 3.2.3) of this report. The data suggests that a company using 

CMM as an SPI can expect between 25% and 70% defect reduction.

Figure 3.3: Defect Reduction Box Chart for CMM

3.2.3 Capability Maturity Model Integration (CMMI)

According to Wezka, Babel, and Ferguson (2000), success of the CMM spawned a 

plethora of process maturity models during the 1990s.  The CMMI Product Team at the Software 

Engineering Institute (SEI) along with numerous representatives from Government and industry 

spearheaded an effort to combine features of the best models, including the CMM, into the 

CMMI. While the CMM emphasized software engineering, the CMMI also addresses systems 

engineering, integrated product and process development (IPPD), supplier agreement 

management, and hardware considerations.  There is also a standard assessment method for 

CMMI, the Standard CMMI Assessment Method for Process Improvement (SCAMPI).  

As illustrated in Table 3.4, which is from Version 1.2 of the CMMI released by the 

CMMI Product Team (2006), there are two representations of the CMMI, continuous and staged.  

The continuous representation addresses capability levels which are primarily for individual 



38

process areas, while the staged representation addresses overall organizational maturity levels 

(and is more similar to the CMM).  The CMMI is updated periodically, and articles such as the 

one by Phillips (2007) summarize the changes for each update.  

Level Continuous Representation:
Capability Levels

Staged Representation:
Maturity Levels

Level 0 Incomplete N/A
Level 1 Performed Initial
Level 2 Managed Managed
Level 3 Defined Defined
Level 4 Quantitatively Managed Quantitatively Managed
Level 5 Optimizing Optimizing

Table 3.4: Comparison of CMMI Levels (CMMI Product Team, 2006)

As is the case for the CMM, many organizations have reported substantial improvements 

from SPI related to their use of the CMMI.  In an SEI technical report, Gibson, Goldenson, and 

Kost (2006) described in detail the results from more than 30 organizations that have used the 

CMMI for process improvements.  Table 3.5 summarizes the overall median improvements by 

performance category, and shows substantial improvements, especially for ROI.

Performance Category Median Improvement

Cost 34%

Schedule 50%

Productivity 61%

Quality 48%

Customer Satisfaction 14%

Return on Investment (ROI) 4:1

Table 3.5: Performance Improvement Over Time By Category
(Gibson, Goldenson, and Kosh, 2006)

The SEI Technical Report does summarize results of the contributing companies, but 

more detailed results for individual companies can be found on the SEI web site for CMMI 

performance results, http://www.sei.cmu.edu/cmmi/results.html.  



39

More results from individual companies are available from the proceedings of annual 

CMMI conferences; for example, Freed (2004) described results from Raytheon Network Centric 

Systems who attained CMMI Level 5 in 2003.  They were able to realize a 5% improvement in 

their overall cost performance index, an 8% improvement in schedule performance index, a 44% 

decrease in defect density, and a 3:1 ROI.  Tower (2004) described marked improvements in the 

investment bank area from J.P. Morgan from just progressing from CMMI level 1 to CMMI 

Level 2.  Here, an ROI of 5:1 was realized, schedule slippage was reduced by 80%, and defects 

were reduced by more than 80%.  When the firm attained CMMI Level 3, defects were further 

reduced by 50%.  The web site for the proceedings of these conferences is by year; for example, 

the 2004 conference proceedings are at http://www.dtic.mil/ndia/2004cmmi/.

Goldenson and Gibson (2003) report on several companies who experienced positive 

results from using the CMMI for process improvement.  Accenture stated that an ROI of 5:1 

could be realized for some of their programs.  Boeing (Australia) realized a 33% decrease in 

costs of correcting defects, and Lockheed Martin (M&DS) realized a 15% decrease in costs of 

correcting defects, as well as a 4.5% decline in overhead rates and a 20% reduction in unit 

software costs.

There are several reports that describe the results of using the CMMI in single companies 

or organizations.  Sheldon (2003) reported on the results of using the CMMI for process 

improvement at several Raytheon sites.  A site which reached CMMI Level 3 realized an ROI of 

6:1 and a 100% increase in early defect containment rates.  Another site that reached Level 3 

reduced rework costs by 42%.  Henry, et al (2003) described the results of Motorola GSG in 

India from attaining CMMI Level 5.  The cost of rework was 6.4 % of Effort measured after the 

improvements, which exceeded the goal of 8%.  The change in cycle time (the time from 

inception to product release) was 1.62 ratio of baseline cycle time to CMMI Level 5 cycle time 

measured after the improvements, which exceeded the goal of 1.6 times.  The change in software 

development productivity was 1.17X improvement measured after the improvements which did 

not meet goal of 1.5X, but did show improvement.  

Scott (2004) described reductions in cycle times as NCR Self Service in Scotland 

progressed through CMM and, later, CMMI levels.  Among other results, cycle time was reduced 

from 80 weeks to about 26 weeks when the company reached CMM level 3.  Singh (2004) 

describes a company that attained CMM Level 3, and was in the process of attaining CMMI 

Level 2.  Defects found during the acceptance test phase was about 44 % measured after the 



40

improvements compared to before the improvements.  (Causal Analysis and Resolution (CAR) 

identified process steps injecting defects.)

Weszka (2004) presented the results of using the CMMI at three Lockheed Martin 

organizations.  At Lockheed Martin Systems Integration in Owego, NY, software development 

productivity improved 126 % in transitioning from CMM Level 5 to CMMI Level 5.  The 

number of defects delivered to the customer was reduced 80 % after transitioning from CMM 

Level 5 to CMMI Level 5.  At Lockheed Martin Maritime Systems and Sensors, Radar Division, 

the number of defects delivered to the customer was also reduced by 80% after transitioning from

CMM Level 5 to CMMI Level 5.  At Lockheed Martin Maritime Systems and Sensors, Undersea 

Division, Total major defects observed was 0.15 major defects / KSLOC measured before the 

improvements and 0.051 major defects / KSLOC measured after transitioning from CMM Level 

5 to CMMI Level 5.  Richter (2004) measured the cost per function as DG Systems advanced 

from “below CMM Level 2” to “CMM Level2” to “CMMI Level 3 almost satisfied”.  The cost 

per function was only 80% of the cost of below CMM Level 2 when CMM Level 2 was attained; 

however, it was reduced to 48% of the “below CMM Level 2” cost when the company reached 

“almost CMMI Level 3”.  Finally, Vu (2005) assessed the improvements for Boeing as they 

progressed from CMM Level 5 to CMMI Level 5.  There was about a 35% decrease in schedule 

required for similar programs, as well as a 4% decrease in maintenance costs and a 10% increase 

in software reuse.

According to Reifer (2007), special considerations must be given to those organizations 

that have attained CMMI Level 5.  Here, SPI activities can not be justified based on 

improvements that occur at higher levels; cost avoidance and productivity tend to remain “flat”.    

At Level 5, organizations focus on optimizing existing processes instead of developing new ones.   

However, these organizations can make a case for SPI activities if they are aligned with 

improving business and emphasizing finding and correcting defects early in a program. 

Table 3.6 summarizes the results of all studies included in the DACS ROI Dashboard© to 

date for CMMI as an SPI.  Like the CMM, using the CMMI gave overall positive results in all

areas.



41

Metric Data 
Points

Minimu
m

Maximum Median Mean Standard 
Deviation

25th 
Percentile

75th 
Percentile

ROI 9 2 ratio 13.3 ratio 3 ratio 4.64 
ratio

3.55 ratio 2.25 ratio 5.5 ratio

Productivity 12 5% 
increase

250% 
increase

39% 
increase

57% 
increase

67.5% 
increase

13.5% 
increase

66.5% 
increase

Project Cost 2 20% 
decrease

40% 
decrease

30% 
decrease

30% 
decrease

14.14% 
decrease

N/A N/A

Improvement 
Cost

1 1.1% of 
total 
effort

1.1% of 
total 
effort

1.1% of 
total 
effort

1.1% of 
total  
effort

N/A N/A N/A

Cycle Time 5 15% 
decrease

50% 
decrease

38% 
decrease

32.6%
decrease

14.62% 
decrease

17.5% 
decrease

45% 
decrease

Schedule 
Variance

3 35% 
decrease

50% 
decrease

40% 
decrease

41.67% 
decrease

7.64% 
decrease

35% 
decrease

50% 
decrease

Rework 1 60% 
decrease

60% 
decrease

60% 
decrease

60% 
decrease

N/A N/A N/A

Quality (% of 
defects found)

1 98% 
defects 
found

98% 
defects 
found

98% 
defects 
found

98% 
defects 
found

N/A N/A N/A

Quality (% 
defect 
reduction)

20 0.5%
 defect 
reduction

95%
 defect 
reduction

48.5% 
defect 
reduction

47.64% 
defect 
reduction

29.21% 
defect 
reduction

25.5% 
defect 
reduction

67% defect 
reduction

Table 3.6:  Results of CMMI Usage from the ROI Dashboard©

Figure 3.4 shows the ROI results for both CMM and CMMI.  The average ratio of 4.64:1 

for CMMI is less than that of the CMM; however, several organizations had already attained high 

CMM levels and were measuring changes from transitioning from the CMM to the CMMI, 

sometimes at the same maturity level.  For example, one company attained a 2:1 ROI when they 

moved from CMM Level 5 to CMMI Level 5.  The data suggests that an organization using the 

CMMI as an SPI can expect an ROI between 2:1 and 6:1.

Figure 3.4: ROI Box Chart for CMM and CMMI

Figure 3.5 shows the productivity results for both CMM and CMMI.  The average 

increase of 57% for CMMI is, as in ROI, less than that of the CMM; however, as in the case of 

ROI, several organizations had already attained high CMM levels and were measuring changes 



42

from transitioning from the CMM to the CMMI, sometimes at the same maturity level.  For 

example, two companies incurred productivity improvements of only 17% and 25% as they 

moved from CMM Level 5 to CMMI Level 5.  The data suggests that an organization using the 

CMMI as an SPI can expect a productivity increase between 20% and 70%.

Figure 3.5:  Productivity Box Chart for CMM and CMMI.

Figure 3.6 shows the defect reduction results from both the CMM and CMMI.   It is very 

interesting to note the similarity of the statistical averages and medians between the CMM and 

CMMI.  The lower values for CMMI are for companies that moved to a CMMI level from an 

equivalent CMM level (and, in one case, from a higher CMM level).  The data suggests that an 

organization using the CMMI as an SPI can expect a defect reduction between 25% and 65%.

Figure 3.6:  Quality Box Chart for CMM and CMMI



43

3.2.4 Personal / Team Software process (PSP/TSP)

The PSP and TSP were developed in the late 1990s by Humphrey (2000) and other SEI 

associates to apply CMM principles to individual and team development respectively.  The idea 

behind the PSP and TSP is that well-qualified people and properly formed teams of qualified 

people can develop quality products, which should improve ROI.  Indeed, Webb and Humphrey 

(1999) report significant improvements after implementing TSP for a program at Hill AFB, Utah.  

Defects removed prior to integration testing improved to 21 defects per thousand source lines of 

code (KSLOC) from 13 before TSP was implemented.  Productivity during testing improved to 

0.22 test days per KSLOC from 0.94 to 2.89 test days per KSLOC before TSP was implemented.  

Defects found during the acceptance test phase was 0.07 to 1.89 Defects/KSLOC measured 

before the TSP improvements and 0.0 Defects/KSLOC measured after the improvements

Ferguson (1999) reported that AIS Corporation realized improvements from using the 

PSP.  When the PSP was used, the number of defects decreased by more than 50%, and 

productivity increased by about 20%, primarily because less testing time and less rework was 

needed.  In addition to reducing cost; hence, improving ROI, the resultant products were of 

higher quality.  An added benefit was more accuracy in cost and schedule estimating.  In another 

study, Ferguson (2000) reported that Advanced Information Systems, Inc (AIS) observed that 

software productivity increased from 8.1 LOC per hour to 9.5, and defects per KLOC were 

reduced from 1.0 defects per KLOC to 0.42 after the PSP was employed.  McAndrews (2000) 

reported on results by Teradyne, Boeing, and TIS Corporation in using the TSP.  In all three 

cases, the actual number of post-released defects markedly decreased for TSP projects.  Also, for 

both Teradyne and TIS, productivity improved by about 16% and costs were reduced by 

approximately 15% which shows positive ROIs.

Munson (2002) showed that use of the TSP in one organization reduced total costs by 

60%.  Using TSP, the organization expended more effort in the beginning of the program, during 

requirements and design, but spent less effort during testing, and much less on post-test activities 

which involved fixing defects.  Training costs of implementing TSP were offset by savings after 

only 1600 lines of code are produced.  Also, by eliminating most of the time needed to correct 

defects in released products, an organization can concentrate instead on exploiting new business 

opportunities.



44

Davis and Mullaney (2003) reported the results of 13 organizations that used the TSP for 

software development.  Overall, these organizations averaged a 6% schedule overrun for their 

programs.  This compares with an industry average of 100% using traditional methods, and a 

large number of cancellations resulting from excessive schedule overruns.  The quality of the 

software developed by TSP organizations is remarkable.  The TSP organizations delivered 

software with 0.06 defects per thousand lines of code compared to CMM Level 1 organizations 

using traditional methods that averaged 7.5 defects per thousand lines of code.  Even CMM 

Level 5 organizations could only average 1.05 defects per thousand lines of code before they 

employed TSP.  Hoffman (2003) reported on results from Northrop-Grumman using the PSP, 

along with CMMI Level 5, to improve performance on a program they were managing.  The 

number of defects observed per unit output was 6.6 per KSLOC measured before the 

improvements and 2.1 per KSLOC measured after the improvements.  The ROI (cost 

savings/cost of improvement) was a 13.3 ratio measured after the improvements based on time 

saved on defect resolution.  They also reported an increase in customer satisfaction which is 

“priceless”.

Kimberland (2004) reported dramatic results from using the TSP on a Microsoft project.  

There was a 35% project cost savings, and unit test defects were reduced from 25 per KLOC to 7 

per KLOC.  The team also had a high score on Microsoft’s internal project quality index.

Humphrey (2004) studied the effects of using TSP for CMM Level 5 companies on defect 

reduction.  Defects per thousand lines of code (KLOC) were reduced from 1.05 to 0.06 when the 

TSP was used.

A criticism of quality improvement is a perception that productivity will be reduced 

because of the purported extra effort needed to insure high quality software.  However, using 

TSP, organizations improved their productivity by 78%.  The use of TSP, therefore, is a “win-

win” practice since quality is enhanced while cost is reduced.

Table 3.7 summarizes the results of all studies included in the DACS ROI Dashboard© to 

date for PSP/TSP usage as an SPI.  Like the CMM and CMMI, using the PSP/TSP gave overall 

positive results in all areas.



45

Metric Data 
Points

Minimum Maximum Median Mean Standard 
Deviation

25th 
Percentile

75th 
Percentile

ROI 2 2.6 ratio 13.3 ratio 7.95 ratio 7.95 
ratio

7.57 ratio N/A N/A

Productivity 1 16% 
increase

16% 
increase

16% 
increase

16% 
increase

N/A N/A N/A

Project Cost 1 35% 
decrease

35% 
decrease

35% 
decrease

35% 
decrease

N/A N/A N/A

Schedule 
Variance

2 82% 
decrease

100% 
decrease

91% 
decrease

91% 
decrease

12.73% 
decrease

N/A N/A

Quality (% 
defect 
reduction)

5 52% 
defect 
reduction

100% 
defect 
reduction

85% 
defect 
reduction

78.8% 
defect 
reductio
n

18.89% 
defect 
reduction

60% 
defect 
reduction

94.5% 
defect 
reduction

Quality (% 
of defects 
found)

2 96.8% 
defects 
found

99.6% 
defects 
found

98.2% 
defects 
found

98.2% 
defects 
found

1.98% 
defects 
found

N/A N/A

Table 3.7: Results of PSP/TSP Usage from the ROI Dashboard©

Figure 3.7 shows the defect reduction results from using the PSP/TSP.  Although there 

are limited reported data on results from PSP/TSP, the average defect reduction of 80% seems 

impressive.  The majority of organizations using the PSP/TSP were also advancing in CMM or 

CMMI levels and attributed the defect reductions to CMM (or CMMI) and PSP/TSP usage 

combined, so the actual impact of PSP/TSP alone is probably less than Figure 3.7 would indicate.  

Still, based on results form organizations using only the PSP/TSP as an SPI, using the PSP/TSP 

are likely to result in a reduction in defects.

Figure 3.7:  Quality Box Chart for PSP/TSP



46

3.3 Results of Specific Process

While Section 3.2 addressed general practices and benefits, this Section addresses benefits from 

five specific practices that have been shown to improve ROI for organizations.  The five specific

practices are inspections, software reuse, Cleanroom software development, agile methods, and 

systems engineering.

3.3.1 Inspections

Inspections are formal processes that are intended to find defects in software and other 

products at or near the point of insertion of the defect, thereby using fewer resources for rework.

This is achieved by inspecting the output product(s) of each operation in the development 

process to verify that it satisfies the exit criteria of the operation. Defects are defined as any 

deviations from the exit criteria of any operation. Inspections can be performed on any product 

(e.g., test plans, procedures, users manuals, code, code fixes) to improve defect detection 

efficiency of any process that creates the product. Inspections are based on the inspection process 

developed by Fagan (1986) and are typically referred to as Fagan inspections. Inspections are a 

more rigorous and formal process than walk-throughs; they are checklist-oriented in most 

instances.

Users of the method reported significant improvements in quality, development costs and 

maintenance costs. Jones (1996) estimates that the average software company in the United 

States releases products with 15% of the defects still in the product.  Companies that rigorously 

employ inspections are approaching 1% defects remaining in a released product. Jones observed

that with 15% defects in released products, you can never have satisfied customers.

Doolan (1992) described the Fagan inspection process. An inspection is organized by a 

moderator who is appointed by the Software Quality Assurance organization.  The moderator 

reviews the inspection article and checks that it satisfies the entry criteria of the operation. The 

moderator assembles an inspection panel of no more than 5 people (including the creator). The 

inspectors attend a 20-30 minute kick-off meeting to discuss the objective of the inspection and 

to distribute inspection material.  Roles are assigned to some of the inspectors.  Inspectors then 

study the material and note any defects. Checklists are used to stimulate defect finding. A 

meeting of less than 2 hours is held in which every defect is logged including defects discovered 

at the logging meeting. A causal analysis meeting is then organized to discuss some of the errors 



47

uncovered in the inspection, and to propose possible ways to prevent this type of error in the 

future.

Fagan (1986) reported that developers who participate in the inspection of their own 

product actually create fewer defects in future work.  Since inspections formalize the 

development process, productivity and quality enhancing tools can be adopted more easily and 

rapidly. Between 1976 and 1984, on their System 370 software, IBM was able to double the 

lines of code shipped and reduce by two-thirds the number of defects per KSLOC (thousands 

lines of code) by utilizing inspections.  Fagan stated that design and code inspection costs 

amount to 15% of project costs. On four projects reported by Fagan, defects discovered after 

release ranged from 0.0 defects per KSLOC to 0.3 defects per KSLOC. One project reported a 

25% reduction in development costs; another reported a 9% reduction in inspection costs versus 

walk-throughs; and a third project reported a 95% reduction in corrective maintenance costs. In 

1979, Fagan reported that 12% of programmer resources were for fixing post-shipment bugs.

Fagan estimated that the cost of finding and fixing defects early is 10 to 100 times less than it 

would be during testing and maintenance.

Doolan (1992) utilized Fagan's inspection technique at Shell Research's Seismic Software 

Support Center (SSSC) for validating and verifying requirements.  Doolan observed that 

previously 50% of the 300 to 400 faults found each year in SSSC's software were enhancement 

requests that would have been dealt with had more care been taken in specification and 

requirements analysis of the product. Given an average cost of approximately $3,500 to fix an 

error (for manpower, computer time, testing time, configuration management, fault-report 

database updates, user notification and generation of release notifications), Doolan assessed the 

cost of this non-conformance at 3.5 man years. He measured the payback in terms of costs saved 

for every hour invested in inspections. Doolan estimated that fixing defects in released software 

costs as much as 80 times more than during the specification stage. He estimated that for each 

hour of inspection, 30 hours are recouped, for a yearly average saving of 16.5 staff-months.  Non-

quantifiable benefits were that inspections promote teamwork and team spirit, and prevent the 

introduction of the same errors in the future.

At the Jet Propulsion Laboratory (Kelly, 1992), a modified version of Fagan inspections 

was used for software requirements (R1), architectural design (I0), detailed design (I1), source 

code (I2), test plans (IT1) and test procedures (IT2). They modified the inspection process, 

adding a third hour to the inspection logging session to discuss problem solution and resolve 



48

open issues raised in the inspections. A 1.5 day course in formal inspections was the only initial 

cost to implement inspections.  Experience from the 203 inspections measured (23 R1, 15 I0, 92 

I1, 34 I2, 16 IT1 and 23 IT2) showed a higher density of defects in early life cycle products than 

in later ones.  Kelly was able to approximate defects found per page as y = 3.19e0.61x , where x= 

1, 2, 3, 4 for R1, I0, I1 and I2 respectively. The average cost to fix defects close to their origin 

found during inspections was 0.5 hours versus 5 to 17 hours required to fix defects found during 

formal tests, because defects found during formal tests require detection and tracing of the defect 

and all associated documents, and then retesting.  The cost in staff hours to find a defect during 

inspections was 1.1 hours and 0.5 hours to fix the defect.

Madachy (1995) described utilization of inspections at Litton Data Systems.  Litton has 

experienced a 30% reduction in the number of errors found during systems integration and test.

400 people at Litton have been trained and 600 inspections have been performed.  On one project 

they have experienced a 50% reduction in integration effort.  Madachy estimated that 2.3 staff 

hours are saved in systems testing for every inspection hour. 73% of the 600 inspections have 

produced a positive return and inspections account for 3% of the total project effort.

Cardiac Pacemakers Incorporated (Olson, 1995) utilized inspections to improve the 

quality of its life critical software. Olson estimates that if the cost to fix a defect during design is 

1X, then fixing design defects during test is 10X and in post-release is 100X. He estimates the 

effort to fix and verify a defect once detected in the process is 0.25 to 0.5 hours during 

requirements and design, using the inspection process, versus 5-10 hours during systems 

integration and test, utilizing testing, which is a 10-20:1 ratio. Costs incurred were the cost of 

inspections (5-15% of the total project), startup costs and overhead (e.g., SEPGs).  Cost 

reductions are the estimated cost by phase without inspections minus the actual costs by phase 

with inspections.  The estimated ROI is 7:1 with $600-$700k in savings.  Olson observed that 

inspections remove 70-90% of faults; the rest are removed with tests.

Bull HN Information Systems (Weller, 1993) conducted 6,000 inspections on its GCOS 8 

system. They estimated that code inspections before unit test found 80% of the defects and 

inspections after system test found 70% of the defects. They have concluded that inspections can 

replace unit testing, but not later stages of testing.  Rooijmans (1996) reported that Philips TV 

observed the following changes as a result of using Fagan inspections: The number of defects 

observed per unit output was 5.41 Test Defects per Kilobyte measured before the inspection 

improvements and 2 Test Defects per Kilobyte measured after the improvements.  The overall 



49

cost investment of the improvement was 0.8 staff years measured after the inspection 

improvements, but there was a total savings of 6 staff years as a result of using inspections, 

which results in an ROI of 650%.  Lee (1997) documented the lessons learned from application 

of formal inspections on Lockheed Martin's space shuttle onboard software project.  On their 

projects, they have been able to achieve error detection rates of 85 % to 90%.

O’Neill (2003) compared the results of using practices of ad hoc programming (AHP), 

structured software engineering (SSE), and disciplined software engineering (DSE), which 

includes use of inspections, on development defect detection and leakage, and test defect 

detection and leakage.  AHP corresponds to CMM Level 1, SSE to CMM Levels 2 and 3, and 

DSE to CMM Levels 4 and 5.  The results of a National Software Quality Experiment conducted 

during the late 1990s showed that DSE results in the most defects being detected during 

development (requirements, design, and coding), and fewer defects after testing.  While the ROI 

dollars are not always evident from DSE, the much higher quality of the software is evident, so 

organizations using DSE with its accompanying emphasis on inspections are expected to have 

greater customer satisfaction.

El Emam (2005) showed that inspections are effective in that the effort needed to correct 

defects using design or code inspections is only 25% of the effort needed to correct defects 

during testing.  The ROI from using inspections instead of testing alone, in terms of percentage 

savings, is 11% for pre-release costs, 26% for post-release costs, and 38% for customers.  The 

use of inspections results in a 3% schedule savings, which shows that quality improvements from 

inspections do not add time to a software project.   Freimut (2005) described the results of using 

inspections at Siemens AG, Germany.  The cost of rework was a 67 % mean decrease measured 

after the improvements for inspections performed in the analysis phase, the cost of rework was a 

47% mean decrease measured after the improvements for inspections performed in the design 

phase, and the cost of rework was a 12% mean decrease measured after the improvements for 

inspections performed in the development, or coding phase.

Table 3.8 summarizes the results of all studies included in the DACS ROI Dashboard© to 

date for using inspections as an SPI..  Use of inspections gave overall positive results in all areas.



50

Metric Data 
Points

Minimum Maximum Median Mean Standard 
Deviation

25th 
Percentile

75th
Percentile

ROI 15 2 ratio 30 ratio 4.8 ratio 6.84 
ratio

6.62 ratio 4.23 ratio 7 ratio

Productivity 2 37% 
increase

350% 
increase

193.5% 
increase

193.5% 
increase

221.32% 
increase

N/A N/A

Project Cost 1 8% 
decrease

8% 
decrease

8% 
decrease

8% 
decrease

N/A N/A N/A

Improvement 
Cost

1 3% of 
total effort

3% of 
total effort

3% of 
total 
effort

3% of 
total 
effort

N/A N/A N/A

Quality (% 
defect 
reduction)

5 63% 
defect 
reduction

100% 
defect 
reduction

99% 
defect 
reduction

86.6% 
defect 
reductio
n

18.12% 
defect 
reduction

67% 
defect 
reduction

100%  
defect 
reduction

Quality (% 
of defects 
found)

6 50% 
defects 
found

100% 
defects 
found

86% 
defects 
found

77.5% 
defects 
found

22.07% 
defects 
found

50% 
defects 
found

93% 
defects 
found

Rework 4 12% 
decrease

67% 
decrease

39% 
decrease

39.25% 
decrease

23.39% 
decrease

21.5% 
decrease

57% 
decrease

Table 3.8: Results of Using Inspections from the ROI Dashboard©

Figure 3.8 shows the ROI results from using Inspections.  The median ratio of 4.80 is 

probably more representative of actual results than the mean of 6.84 since one organization’s 

30:1 ratio skews the mean significantly.  The median value is also consistent with an extensive

study by O’Neill (2003), the National Software Quality Experiment, which involved many 

Government, Commercial, and DoD contractor organizations.  The ROIs for these organizations 

averaged 4.69, 4.65, and 3.69 respectively.  The data suggests that organizations can expect a 

3.5:1 to 5:1 ROI when inspections are used as an SPI.

Figure 3.8:  ROI Box Chart for Inspections



51

Figure 3.9 shows the quality results from using Inspections in terms of percentages of 

defect reduction and defects found.   The median percentages of 96% for defect reduction and 

84% for percentage of defects found indicate that use of inspections as an SPI can dramatically 

reduce defects.  The available data suggests that organizations can expect to reduce defects by 90 

to 99% using inspections, and can increase the percentage of defects found by 80% to 90%.

Figure 3.9:  Quality Box Charts for Inspections

3.3.2 Software Reuse

As described by Lim (1994), work products are the products or by-products of the

software development process. Work products include designs, specifications, and code and test 

plans. Reuse is the use of existing work products elsewhere within a project or on other projects. 

Since software development schedules, estimates and costs are heavily influenced by the amount 

of new code that has to be designed and developed, and if software development is on the critical 

path of a project, reusing work products can have a significant positive impact on costs and 

schedules for a project.

A significant portion of the literature concentrates on systematic reuse in which 

organizations design software to be reusable.  For example, at two of the divisions of Hewlett 

Packard (HP) (Lim, 1994), reuse was a critical ingredient in achieving productivity and quality 

objectives. Lim noted that because work products are used several times, the accumulated fixes 

in each use results in a higher quality product.  One division experienced a 51% reduction in 

defects (from 4.1 to 2.0 defects/KSLOC) in all code and a 57% increase in productivity (from 

700 to 1,100 SLOC/staff month) on 68% reused code. The other division experienced a 24% 

defect reduction (from 1.7 to 1.3 defects/KSLOC), a 40% increase in productivity (from 500 to 



52

700 SLOC/staff month) and a 42% reduction in cycle time (from 36 to 21 calendar months) on 

31% reused code. Reused code had 0.4 defects per KSLOC. The author noted that the additional 

costs to create reusable work products ranged from 111% to 480% of a work product that did not 

consider reuse. By phase, the percent increase in effort was 22% for investigation, 20% for 

design, 17% for code, 5% for testing and 5% for repairing. Lim reported that with reuse others 

have stated that high level design costs increase by 10%, detailed design by 60% and code and 

unit test by 25%. However, the relative cost of reuse ranged from 10% to 63% of the costs of a 

build from scratch project. One division of HP has been involved in systematic reuse for 10 

years. Gross costs for that period were $1 million with a savings of $4.1 million for a ROI of 

410%. The break-even point on the start up costs ($300,000) was in the second year. Another 

division has been involved in reuse for 8 years. Gross costs were $2.6 million and savings were 

$5.6 million for a ROI of 216% with a break-even in the sixth year.

O’Connor (1994) described Rockwell International’s reuse experience within command 

and control systems. They used the Synthesis Methodology, as developed by the Software 

Productivity Consortium (SPC). Reuse is integral to this methodology, which forms the 

foundation for a product family and associated production processes. It defines a systematic 

approach to identifying the commonalities and variability necessary to characterize a 

standardized product line as a domain. A domain is a product family and process for producing 

instances of that family. Commonalities reflect work that can be accomplished once and reused 

to create any product. Variability specifies compile time parameters to customize the 

application.  O’Connor stated that the cost of creating a reuse domain is approximately 

equivalent to the cost of making a hand-crafted system in that domain of the same size. 

Although no specific savings were noted, the author did state that the benefits of this reuse 

methodology were improved productivity, improved product quality, improved responsiveness to 

customer needs, lower bids on projects, and institutionalization of shared knowledge and 

expertise among systems in a business area.

In a seven year period the NASA Software Engineering Laboratory, as reported by 

McGarry (1993) and Basili (1994), increased the average level of reuse by 300% from about 20% 

to nearly 79%.  At the same time, the error rate has decreased by 75% from 4.5 to 1 

error/KSLOC, and the cost of software per mission has decreased by 55% from about 490 staff 

months to about 210 staff months.



53

Joos (1994) described the reuse efforts on two pilot projects at Motorola.  In one pilot

project, to encourage reuse, a cash reward incentive program was established.  Each time an asset 

is added to the reuse library, a $100 reward is paid to the developer.  Each time a reuse asset is 

consumed, an award proportional to the savings is given to the developer and the person or 

organization reusing the software. On a second project involving compiler development and a 

compiler tool test suite, an 85% reuse rate was achieved with a 10:1 productivity improvement.

Leach (1997) reported on the results of reuse for 312 projects in the aerospace industry 

prior to 1993.  For projects employing reuse, software development productivity increased by 

20%, the number of customer complaints decreased by 20%, the mean time to repair (correct 

defects) decreased by 25%, and development time decreased by 25%, on the average.  Leach also 

wrote that a 1993 study of Japanese companies reported similar results from reuse, including a 

20% reduction in training time needed.

Poulin (1997) reported on the benefits of reuse for several companies.  Raytheon reported 

a 50% increase in productivity from 60% reuse in COBOL programs.  DEC reported that cycle 

times were reduced by factors ranging from 3 to 5 based on 50% to 80% reuse.  Toshiba reported 

a 20 to 30% reduction in defects based on 60% reuse, as Matsumura (1991) had noted 

previously.  A study of nine other companies showed reuse resulted in an 84% decrease in cost, a 

70% reduction in cycle time, and reduced defects.

Ezran, Morisio, and Tully (2002) explained reuse as a systematic software development 

practice.  It not only includes “building blocks”, or components, but also requirements and 

architecture similarities.  They gave several examples of companies that have benefited from 

reuse not only in reducing costs and schedules (hence, improving ROI), but also in improving 

software quality.  For example, Hewlett Packard reduced defects by 74% while improving 

productivity by 57% for a project, while NEC improved productivity by 600% and quality by 

300%.

Clements and Northrop (2002) explored reuse as a feature of software product lines, 

which are “sets of software intensive systems sharing a common, managed set of features that 

satisfy the specific needs of a particular market segment or mission and that are developed from a 

common set of core assets in a prescribed way”.  Reuse not only includes software components, 

but other “strategic assets” including requirements, architecture, performance models and 

analyses, business cases, software tools, test cases, plans, and data, and personnel skills and 

training.  Northrop has been doing ongoing research at the SEI on product lines, and in a later 



54

presentation, Northrop (2007) gave several instances of benefits from reuse in product lines.  For 

example, Cummins reduced product cycle effort from 250 person-months to “a few person 

months”, and a Raytheon organization reduced development time and cost by 50% while 

increasing productivity by a factor of 7 and quality by a factor of 10.  Time to field was 9 years 

measured before the improvements and 3 years measured after the improvements. Development 

staff size was 210 developers measured before the improvements and 30 developers measured 

after the improvements.

L. Jones (1999) also reported positive results from using product lines.  According to 

Jones, the Swedish naval defense contractor, CelsiusTech, reported a reversal in the hardware-to-

software cost ratio from 35:65 to 60:20 that now favors the software.  Hewlett Packard has 

collected substantial metrics showing two to seven times cycle time improvements with product 

lines.  Motorola has realized a four times cycle time improvement with 80 percent reuse.

With the obvious benefits of software reuse, as noted by Card (1994), why have so many 

reuse programs failed? He has observed that reuse programs have achieved 30 to 80% reuse;

however, others have failed. He has concluded that the economics are such that the amount of 

reuse depends on how well the reuse products match the needs of the reuse consumer, the skill 

and knowledge of the consumer about reuse, and the degree of similarity between producer’s and 

consumer’s requirements. From a cultural viewpoint, hindrances include the “not invented here” 

syndrome and resistance to change.  Overcoming these cultural hindrances requires training, 

incentives, good project management, and good reuse measurement.

Lougee (2005) concluded that reuse can save time and cost, improve ROI, and enhance 

safety at the same time; however, reuse will not be effective unless a rigorous process is used.  

The elements of this process include identifying the purpose and goals, cataloging and analyzing 

existing or proposed artifacts, comparing alternative approaches and selecting the best approach, 

planning thoroughly, modifying strategy when appropriate, and mitigating risks.  Lougee also 

emphasized the need to involve stakeholders throughout the entire reuse process.

Table 3.9 summarizes the results of all studies included in the DACS ROI Dashboard© to 

date for using reuse (including product lines) as an SPI.  Employing reuse gave overall positive 

results in all areas.

The majority of reported results of reuse initiatives focus on the impacts on productivity 

and cycle time.  Figure 3.10 shows the productivity improvement results from employing reuse.  



55

As in Figure 3.8 (ROI for Inspections), the median value of 69.5% increase is probably more 

representative of actual results than the mean of 279.92% since one organization’s 1400% skews 

the mean significantly.  Also, as Table 3.8 shows, there was significant variance in results.  The 

data suggests that organizations can expect a 30% to 80% increase in productivity depending on 

the degree and experience with reuse.

Metric Data 
Points

Minimum Maximum Median Mean Standard 
Deviation

25th 
Percentile

75th 
Percentile

ROI 3 4 ratio 10 ratio 4.1 ratio 6.03 
ratio

3.44 ratio 4 ratio 10 ratio

Productivity 12 20% 
increase

1400% 
increase

69.5% 
increase

279.92% 
increase

416.74% 
increase

45% 
increase

400% 
increase

Project Cost 2 84% 
decrease

84% 
decrease

84% 
decrease

84% 
decrease

0%
decrease

N/A N/A

Improvement
Cost

1 111% of 
total effort

111% of 
total effort

111% of 
total 
effort

111% of 
total 
effort

N/A N/A N/A

Cycle Time 13 25% 
decrease

98.4% 
decrease

66.7% 
decrease

58.55% 
decrease

22.07% 
decrease

40% 
decrease

75% 
decrease

Quality (% 
defect 
reduction)

1 25% 
defect 
reduction

25% 
defect 
reduction

25% 
defect 
reduction

25% 
defect 
reductio
n

N/A N/A N/A

Quality (% 
of defects 
found)

1 90% 
defects 
found

90% 
defects 
found

90% 
defects 
found

90% 
defects 
found

N/A N/A N/A

Table 3.9: Results of Reuse from the ROI Dashboard©

Figure 3.10:  Productivity Box Chart for Reuse

Figure 3.11 shows the cycle time reduction results from employing reuse.  Here, the mean 

and median values are relatively close, a mean decrease of 58.6% and a median decrease of 



56

66.7%.  The results with higher values are from reuse associated with product lines and from 

more recent studies.  The data suggests that reuse, especially across product lines, can reduce 

development times by 50 to more than 100%.

Figure 3.11:  Productivity Box Chart for Cycle Time

3.3.3 Cleanroom Software Development

The objective of the Cleanroom methodology is to achieve or approach zero defects with 

certified reliability.  As described by Hausler (1994), the Cleanroom methodology provides a 

complete discipline within which software personnel can plan, specify, design, verify, code, test 

and certify software. In a Cleanroom development, correctness verification replaces unit testing 

and debugging.  After coding is complete, the software immediately enters system test with no 

debugging. All test errors are accounted for from the first execution of the program with no 

private testing allowed. As opposed to many development processes, the role of system testing is 

not to test in quality; instead, the role of system testing is to certify the quality of the software 

with respect to the systems specification. This process is built upon an incremental development 

approach; Increment In1  elaborates on the top down design of increment In . The Cleanroom 

process is built upon function theory where programs are treated as rules for mathematical 

functions subject to stepwise refinement and verification. 

Cleanroom specifications and designs are built upon box structure specifications and 

design.  Box structure specifications begin with a black-box specification in which the expected 

behavior of the system is specified in terms of the system stimuli, responses and transition rules.



57

Black boxes are then translated into state-boxes which define encapsulated state data required to 

satisfy black box behavior. Clear box designs are finally developed which define the procedural 

design of services on state data to satisfy black box behavior.  Team reviews are performed to 

verify the correctness of every condition in the specification. During the specification stage, an 

expected usage profile is also developed, which assigns probabilities or frequency of expected 

use of the system components.  During system correctness testing, the system is randomly tested 

based on the expected usage of the system.  In this process, software typically enters system test 

with near zero defects. 

The Cleanroom process places greater emphasis on design and verification rather than 

testing. In this process, as in inspections (see Section 3.3.1), errors are detected early in the life 

cycle, closer to the point of insertion of the error.  In some of the earliest reported findings on 

Cleanroom development, Mills (1987) observed that, with a Cleanroom methodology, 90% of 

the defects were found before the first execution of the code versus 60% with traditional 

developments.  2.65 errors per KSLOC were observed on a 53 KSLOC program with an 

observed productivity of 400 SLOC per month. He observed that errors from this process are 

much easier to fix, stating that they take 20% the time to fix as compared to traditional software.

Linger (1993) showed that on 15 projects with a combined total of 5 million lines of 

code, the average error rate of 3.3 errors per KSLOC has been observed from first execution 

versus 30 to 50 errors per KSLOC on traditional projects.  Linger also observed that the errors in 

Cleanroom verification are typically simple mistakes, not design mistakes.  Drastically reduced 

maintenance costs result from Cleanroom development.  He claimed that experienced Cleanroom 

teams with subject matter experts involved can achieve a substantially reduced product 

development lifecycle.

Hausler (1994) claimed that the time spent in specification and design is greater than in 

traditional projects, but the time spent in testing is less. Overall, the lifecycle cost is much lower 

than industry averages, and Cleanroom project schedules are less than or equal to traditional 

schedules. Hausler claimed that productivity improvements of 1.5 to 5.0 have been observed 

over traditional projects. In 17 projects performed at IBM using the Cleanroom process, the code 

developed exhibited a weighted average of 2.3 errors per KSLOC through all testing measured 

from the first execution. This can be compared against 25 to 35 errors per KSLOC in traditional 

software.



58

Basili (1994) stated that at the NASA SEL, the time to understand the Cleanroom 

methodology was approximately 26 months.  This time was from first training to the start of the 

second Cleanroom project.  He observed error rates of 4.3 to 6 errors per KSLOC versus 7 errors 

per KSLOC on traditional projects.

At the US Army’s Life Cycle Software Engineering Center at Picatinny Arsenal, Sherer 

(1996) reported a productivity increase from 121 SLOC per staff month to 559 SLOC per staff 

month (a 362% increase) using Cleanroom software engineering over the life cycle of their 

project.  Cumulative failures over the same period were 1.14 per KSLOC.  Sherer estimated an 

ROI of 20.8:1 from introduction of the Cleanroom methodology, where the costs of the 

methodology were training and coaching2 costs.  Training and coaching costs added 17.3% labor 

to the project costs.  Sherer attributed significant improvements in job satisfaction, team spirit 

and team morale to the methodology.

Pressman (2005) said that Cleanroom software development has not gained widespread 

acceptance.  Indeed, few articles have appeared in software books and journals since the mid 

1990s.  However, Pressman stated that the potential benefits of Cleanroom software development 

far outweigh the investment required to implement Cleanroom software development, even in 

organizations where there is cultural resistance to using it.  It results in extremely low failure 

rates that would be difficult, if not impossible, to achieve using less formal methods.

Table 3.10 summarizes the results of all studies included in the DACS ROI Dashboard©

to date for using Cleanroom development as an SPI.  Based on limited data, employing 

Cleanroom development gave positive results in all areas.  The available data suggests that use of 

the Cleanroom methodology is likely to be quite beneficial.

Metric Data 
Points

Minimum Maximum Median Mean Standard 
Deviation

25th 
Percentile

75th 
Percentile

ROI 1 20.8 Ratio 20.8 Ratio 20.8 
Ratio

20.8 
Ratio

N/A N/A N/A

Productivity 2 15%
Increase

360%
Increase

187.5%
Increase

187.5%
Increase

243.95%
Increase

N/A N/A

Cycle Time 1 74%
Decrease

74%
Decrease

74%
Decrease

74%
Decrease

N/A N/A N/A

Quality (% 
of defects 
found)

1 90%
Defects
Found

90%
Defects
Found

90%
Defects
Found

90%
Defects
Found

N/A N/A N/A

Table 3.10: Results of Cleanroom Development from the ROI Dashboard©

                                                
2 Coaches are recognized experts who work after the training to keep the entire team on a common level of expertise.



59

3.3.4 Agile Development

Agile software development is a conceptual framework for undertaking software 

engineering projects.  There are a number of different methods for agile development, most of 

which emphasize minimizing risk by developing software in short time boxes, or iterations, 

which typically last one to four weeks.  The methods usually emphasize face to face 

communication over written documents and working software as a measure of progress.  

Stapleton (1997) studied the effects of using DSDM, an agile method, for the user interface for a 

newspaper tracking system program consisting of about 880 Function Points.  Sysdeco (of 

England), the developing organization, found that effort productivity changed from 5.3 hours per 

Function Point measured before the improvements to 1.5 hours per Function Point measured 

after the improvements using this method.

Probably the most publicized agile development method is eXtreme Programming (XP).  

XP assumes that change is a “way of life” and emphasizes adaptability instead of predictability.  

The fundamental XP values are communication, simplicity, feedback, and courage.  It involves 

performing work in small teams with a customer continuously present on site.  The cycle time is 

only about three weeks between releases.  XP practices include stories, pair programming, simple 

design, “test first”, and continuous integration. The use of agile development methods, including 

XP, is a process improvement method that may result in improved productivity and quality and, 

hence, a positive ROI.  Drobka, Noftz, and Raghu (2004) showed that Motorola was able to 

improve productivity using XP compared to incremental and waterfall development methods.  

While use of incremental development improved productivity by 162% over the waterfall 

method, the four XP projects improved productivity by 265%, 283%, 352%, and 385% over the 

waterfall method.  Test coverage also was very good, but quality varied.  For two of the projects, 

one was better and the other worse than the quality of traditional methods.  Since the four 

projects were pilot projects; however, quality may improve with time.

Manzo (2002) described successes from using Code Science, a tool based on agile 

methods including XP, on a large program called Odyssey.  For one project, XP and the waterfall 

approach were used side-by-side for the same project.  At one time, the XP project was fully 

completed while the waterfall project was not even 50% completed.  On several projects, 

including Odyssey, dramatic reductions in cost and defects were realized when Code Science was 



60

used.  Productivity rates averaged 35 lines of code per hour, which is much greater than that of 

traditional methods.  

Hodgetts and Phillips (2003) presented the results of adopting XP at an internet business 

startup.  They compared the results from two similar efforts for which XP was not utilized and 

for which XP was (later) utilized.  The delivery time was 20 months measured before the XP 

improvements and 12 Months measured after the improvements.  Total defects observed were

508 defects measured before the improvements and 152 defects measured after the 

improvements.  Effort was 207 developer-months measured before the improvements and 40 

developer-months measured after the improvements. 

Layman (2004) studied the effects of adopting XP at Sabre Airline Solutions.  The same 

team performed two releases of a product, one before using XP and one after using XP.  For XP, 

defects found during test phases was 1.0 relative defects per thousand lines of executable code 

(KLEC) measured before the improvements and 0.35 relative defects per KLEC measured after 

the improvements. The number of defects delivered to the customer was 1.0 relative defects per 

KLEC measured before the XP improvements and 0.64 relative defects per KLEC measured after 

the improvements (by four months after release).  Software development productivity was 1.0 

relative KLEC per person month measured before the XP improvements and 1.46 relative KLEC 

per person month measured after the improvements.  Maurer and Martel (2002) studied a web-

based application software development effort that was performed by a group of nine 

programmers using XP.  They compared the number of new lines of code, number of methods, 

and number of classes per person-month using XP and previous efforts not using XP.  They 

noted an increase of productivity of 66% for lines of code, 302% for number of methods, and 

283% for number of classes.  The writers showed how the XP practices improved productivity, 

but stated there was little hard data available at the time to show if XP improved ROI for other 

programs.  

Pair programming, a common XP practice, has been studied by several researchers.

Nosek (1998) conducted a study at Temple University using 15 full time, experienced 

programmers working for a maximum of 45 minutes on a challenging problem.  Five worked 

individually and 10 worked in pairs.  Temple University observed that the time from project 

inception to release was 42.6 minutes measured before the improvements and 30.2 minutes 

measured after the improvements.  (The total effort of pairs was 65% more than the solo 

programmers.)  Pair programming was also studied by Cockburn (1999), who conducted a 



61

controlled experiment at the University of Utah that investigated the economics of pair 

programming.  When pair programming (versus individual programming) was used, total 

development time increased by 15%; however, there was a 15% decrease in total defects 

measured after the improvements (comparing pair programmers to individual programmers).

Also, there was a 20% reduction in lines of code required for the program written.  A lesson 

learned was that the increased cost due to pair programming was offset by reduced defects in the 

testing and support phases measured after the improvements.

Williams (2000) also studied the impact of using pair programming on software 

development for students at the University of Utah.  It was found that, once they adjusted to the 

practice, pair programming teams developed programs in about 60% of the time it took 

individual programmers, and developed programs that only had half as many errors.  

Furthermore, at least 90% of the programmers enjoyed pair programming more than individual 

programming, except in rare cases working with particular incompatible partners.

Nawrocki and Wojciechowski (2001) described an experiment conducted at Poznan 

University of Technology comparing pair programming using XP with two variants of individual 

programming; one variant was based on Humphrey’s Personal Software Process (PSP) and the 

other on individual programming using XP.  Test subjects were students who wrote four 

programs using C, C++, or Pascal.  Six programmers followed PSP; 5 programmers followed XP 

without pair programming; and 5 pairs followed XP with pair programming.  The results of the 

experiments were that total development time was 3.13 mean hours measured before the pair 

programming improvements and 2.44 mean hours measured after the improvements.  Defects 

found during the acceptance test phase averaged 2.53 before the pair programming improvements 

and 2.1 after the improvements.  However, software development productivity decreased from 57 

mean LOC per person-hour measured before the improvements to 48.25 mean LOC per person-

hour measured after the pair programming improvements.

Ciolkowski and Schlemmer (2002) reported the results of a case study conducted at the 

University of Kaiserslautern where students were asked to change a quiz program written in Java.  

Six student teams participated; three teams used pair programming and the other three worked 

individually.  Effort was 24.5 mean hours measured before the pair programming improvements 

and 27 mean hours measured after the improvements.  Source lines of code (SLOC) were 4040 

SLOC measured before the improvements and 3890 SLOC measured after the improvements for 



62

the same functionality.  Neither of the results was statistically significant, but they show the same 

general trends as other studies done before 2002.

Rostaher and Hericko (2002) studied the results of using pair programming for a software 

development organization in Slovenia.  The organization, called the FJA OdaTeam, noted that 

the time from project inception to release was 6.05 hours measured before the improvements of 

pair programming and 6.00 hours measured after the improvements; however, effort was 6.05

person hours measured before the improvements and 12.00 person hours measured after the 

improvements.  Baheti, Gehringer, and Stotts (2002) performed a controlled experiment at the 

University of North Carolina collecting data from a class project with teams of 2 to 4 students.  

There were 9 collocated teams without pairs and 16 collocated teams with pairs, and 8 distributed 

teams without pairs and 5 distributed teams with pairs.  Software development productivity was 

15.1 LOC per hour measured before the pair programming improvements and 14.8 LOC per hour 

measured after the improvements for collocated teams, but this was not statistically significant.  

For distributed teams, software development productivity was 21.1 LOC per hour measured 

before the improvements and 18.5 LOC per hour measured after the improvements, but this was 

also not statistically significant.

Arisholm, et al (2007) reported the results of an experiment conducted at Simula 

Research Laboratory on pair programming for simple and complex Java maintenance tasks.

Statistically significant results are summarized here:  For the simple task, duration was 88 

adjusted mean minutes measured before pair programming improvements and 70 adjusted mean 

minutes measured after the improvements, and effort was 88 person-minutes measured before the 

improvements and 140 person-minutes measured after the improvements.  For the complex task, 

effort was 61 person-minutes measured before the improvements and 129 person-minutes 

measured after the pair programming improvements, but programmers or teams completing all 

tasks correctly improved from 55 percent measured before the improvements to 81 percent 

measured after the improvements.

Lierni (2007) described a survey performed for over 700 organizations to determine the 

current state of agile software development.  Over 80% of those organizations do use agile 

development methods, and more than 25% of those organizations showed significant 

improvements from using agile methods in four areas; they averaged a 60% reduction in 



63

schedule, a 26% reduction in cost, a 55% reduction in defects, and a 55% improvement in

productivity.

Scrum (a term derived from the game of Rugby) is another popular agile development 

method.  Stutzke (2005) described Scrum as a method that uses a form of time boxing which 

divides software development into 30 day periods called sprints.  Schatz and Abdelshafi (2005) 

realized quality improvements using Scrum for projects in their company, Primavera Systems.  

The company realized a 30% improvement in software quality from using Scrum on a company 

project.  Also, the project was delivered four months earlier than the planned release date.

While several studies have shown that agile methods can improve ROI, these methods

should not be looked at as a panacea for software development.  Boehm and Turner (2004) show 

that there are advantages and disadvantages to agile methods and disciplined methods, and show 

how to determine the optimal mix of both methods for a specific type of program.  In few if any 

cases are this mix purely agile methods or purely disciplined methods.

Table 3.11 summarizes the results of all studies included in the DACS ROI Dashboard©

to date for using agile development and its related methods, such as XP and pair programming,

as an SPI.  Although there were some negative results, especially in productivity, employing agile 

development averaged positive results in all areas.

Metric Data 
Points

Minimum Maximum Median Mean Standard 
Deviation

25th 
Percentile

75th 
Percentile

ROI 1 5 Ratio 5 Ratio 5 Ratio 5 Ratio N/A N/A N/A
Productivity 13 53%

Decrease
418%
Increase

2.4%
Decrease

63.84%
Increase

136.95%
Increase

26%
Decrease

112.5%
Increase

Cycle Time 6 6%
Increase

45%
Decrease

21%
Decrease

18.5%
Decrease

18.62%
Decrease

1%
Decrease

29%
Decrease

Quality (% 
of defects 
found)

1 17%
Defects
Found

17%
Defects
Found

17%
Defects
Found

17%
Defects
Found

N/A N/A N/A

Quality (% 
defect 
reduction)

6 -2%
Defect
Reduction

99.9%
Defect
Reduction

22.5%
Defect
Reduction

31.32%
Defect
Reduction

36.34%
Defect
Reduction

9%
Defect
Reduction

36%
Defect
Reduction

Table 3.11: Results of Agile Development from the ROI Dashboard©

Figure 3.12 shows the impact on productivity from using agile development.  The median 

of near zero shows that as many agile development efforts had negative results as positive results.  

Most of the negative results were for pair programming, an XP activity.  Pair programming 

usually resulted in decreased cycle times and improved quality, but the results varied.  When 

other agile practices were used in addition to pair programming (or without pair programming), 



64

the results for productivity were positive.  The most positive results occurred for those 

organizations that were experienced in agile methods, had management support, and worked on 

programs suitable for the use of agile methods.  The data suggests that organizations can expect 

productivity improvements when agile methods are used as an SPI when they are appropriate.  A

reference like Boehm and Turner (1984) can help an organization to determine what types and to 

what degree agile methods should be used for specific programs or projects.

Figure 3.12:  Productivity Box Chart for Agile Development

3.3.5 Systems Engineering

As defined in CMMI Version 1.2 (CMMI, 2006), systems engineering is “the 

interdisciplinary approach governing the total technical and managerial effort required to 

transform a set of customer needs, expectations, and constraints into a product solution and to 

support that solution throughout the product’s life”. This includes the definition of technical 

performance measures, the integration of engineering specialties toward the establishment of 

product architecture, and the definition of supporting lifecycle processes that balance cost, 

performance, and schedule objectives.

Kossiakoff and Sweet (2003) devote a chapter of their book to software systems 

engineering, the application of systems engineering principles and methods to software system 

design and engineering.  They state that the continuing demand for complex software-dominated 

systems may accelerate efforts to introduce systems engineering methods into software 

development.  CMMI Version 1.2 (CMMI, 2006) defines software engineering itself as “the 

application of a systematic, disciplined, quantifiable approach to the development, operation, and 



65

maintenance of software”.  By whatever term it is known, application of systems engineering to 

software efforts can be seen as an SPI area.

Verma (2007) described the results of applying systems engineering and architecture 

techniques to software development projects at IBM.  Of the 62 projects, 27 used the techniques 

and 35 did not.  Software development productivity was 15 Function Points (FPs) per thousand 

project-hours measured before the systems engineering and architecture improvements and 27 

FPs per thousand project-hours measured after the improvements.  The number of defect hours 

after delivery to the customer was 52 defect hours during warranty measured before the 

improvements and 25 defect hours during warranty measured after the improvements.  Cycle 

time in days per function point averaged about 1.1 before the improvements and about 0.4 after 

the improvements.  This study provides strong evidence that application of systems engineering 

to software projects improves ROI.

Table 3.12 summarizes the results of the study included in the DACS ROI Dashboard© to 

date for using systems engineering as an SPI.  Based on limited data, employing systems 

engineering gave overall positive results.  As is the case for Cleanroom development, the 

available data suggests that systems engineering is a useful SPI for software efforts, and more 

data should be available as time progresses.

Metric Data 
Points

Minimum Maximum Median Mean Standard 
Deviation

25th 
Percentile

75th 
Percentile

Productivity 1 80%
Increase

80%
Increase

80%
Increase

80%
Increase

N/A N/A N/A

Quality (% 
of defects 
found)

1 52%
Defects
Found

52%
Defects
Found

52%
Defects
Found

52%
Defects
Found

N/A N/A N/A

Table 3.12: Results of Systems Engineering from the ROI Dashboard©

3.4 Secondary Benefits of Improvement Efforts

This Section presents literature that discusses secondary benefits of software 

improvement efforts.  Many such benefits have been noted in the literature.  For example, 

Strassman (1990) believed that proper utilization of IT will result in gains in market share, better 

prices, reduced inventories, and highly motivated employees.  According to Humphrey (1991), 

lower software professional turnover, improved employee morale, improved company image, 



66

improved customer satisfaction, improved quality of work life, and improved schedule 

performance resulted from process improvements at Hughes Aircraft. Lipke and Butler (1992) 

discuss process improvement efforts at the Oklahoma City Air Logistics Center (OC-ALC) and 

describe as intangible benefits of their efforts increased communications, increased customer 

satisfaction, and on-time software delivery.

Dion (1993) stated that second order effects of their process improvement efforts are 

improved competitive position, higher employee morale, lower absenteeism, and lower attrition.  

These efforts also have less late and over budget projects.  Significant benefits of software reuse 

noted by Lim (1994) are that experienced people can concentrate on developing products that 

less experienced people can reuse and shortened time-to-market. Brodman and Johnson (1995) 

discuss "spillover" benefits from process improvement, including improved morale and 

confidence of developers, less overtime, less employee turnover, and improved competitive 

advantage.  The authors describe how increased productivity can mean a more competitive edge 

in bidding on contracts, and can increase company's capacity to do work and thus perform more 

work within a given period of time.  Meeting schedule and cost projections can translate to 

customer satisfaction, repeat business, and decreased time to market, and improved product 

quality translates to more dollars on the bottom line.

Olsen (1995) discussed the "Quality Chain Reaction" as being that improved quality 

results in reduced cost (less rework), fewer mistakes, fewer delays, better designs, more efficient 

use of resources and materials, improved productivity, and larger market share with better quality 

and lower price.  Curtis (1995) suggested a number of secondary factors to consider when 

evaluating process improvement, since SPI reduces development costs, reduces rework costs, and 

improved estimates.  These factors include savings from less terminated projects, less missed 

delivery dates, and less employee turnover.  Missed delivery dates results in penalties, lost 

market share, lost revenue, overruns, and less repeat customer business.  The author also notes 

that experience has shown that SPI results in fewer crises, less overtime, more business, and 

higher project bonuses.

McGibbon (1997) examined the benefits of formal methods and documented how, like 

Cleanroom software engineering, formal methods exhibit less rework after products are released 

than in traditional software.   According to Diaz and Sligo (1997), the most significant cost 

benefit from Motorola's improvement efforts occurred when projects finished early, allowing the 

company to apply more resources to obtaining more business.  Motorola believes that 



67

productivity is directly related to their ability to win new programs in their DoD business, and 

drives their profitability in emerging commercial products.

Porter and DeToma (1999) reported that, in addition to improved ROI from using SPI, 

GTE experienced some qualitative differences including employee retention and hiring.  GTE 

found that it is more attractive to work in a more mature organization which has employee 

involvement in improvement efforts. The SPI work was becoming "real" to the people.

Jensen (2003) discussed the results from an experiment in pair programming, one of the 

major practices associated with XP and agile development.  According to Jensen, managers 

sometimes believe that having two programmers do the work of one is wasteful, and that 

programmers prefer to work in isolation.  Jensen found, however, that programmers enjoyed 

working in pairs and that they can effectively and efficiently produce a quality product.  Their 

error rate was only a third of that of programmers working alone.

Burke and Howard (2005) discussed the FAA’s process improvement initiatives and the 

results on the people and the organization.  The FAA started SPI as an organizational mandate, 

but this had limitations in that it did not address individual project needs.  Later, SPI efforts were 

combined with knowledge management, which promoted free sharing of information among 

units within the FAA organization.  The combination has resulted in individual groups being 

dedicated to improving their processes, and in organizational barriers being broken down; people 

are now cooperating instead of competing.

Baddoo, Hall, and Jagielska (2006) examined motivational and success factors for 

software developers in a CMMI Level 5 organization.  These developers rate user satisfaction as 

the primary measure of a software product after one year, well ahead of cost and schedule 

concerns.  Also, developers in a high maturity organization tend to be more highly motivated, 

which, in turn, results in more successful software development efforts.

Some organizations have attempted to quantify some of the secondary benefits.  

Yamamura and Wigle (1997) stated that Boeing's improvement efforts results in excellent 

performance, high customer satisfaction, satisfied employees, and a 97% to 100% award fee for 6 

years.  The authors state that employee satisfaction grew from 74% to 96% because of the 

improvements.  They assert that employees take pride in their accomplishments as they 

dramatically reduce defects.  Goyal (2001) reported an increase in developer and customer 

satisfaction resulting from reaching CMM Level 5.  The index for satisfaction of users of Key 



68

Process Area of project planning was 65 % measured before the improvements and 90 % 

measured after the improvements.  User satisfaction with tracking and oversight increased from 

64% to 80%.

Whether these secondary benefits can be measured directly or not, they do supply

additional benefits from using SPI that will provide positive returns to an organization.  They can 

and should be considered in planning for and justifying SPI efforts.

3.5 Risks From Software Improvement

Some may believe that SPI is a magic potion for successful software development.  

However, there is some literature that addresses various factors and risks that need to be 

considered when implementing various software management practices.

Utilization (reuse) of commercial off the shelf (COTS) software is a very popular topic 

today and, as noted by Carney and Oberndorf (1997), is a major emphasis of DoD acquisition 

organizations.  The authors recognize that use of commercial products is one of the remedies that 

might enable us to acquire needed capabilities in a cost effective manner.  The authors believe 

that using COTS components may be beneficial or cause more problems.  The authors discussed 

ten issues that should be considered before selecting COTS components:

a. Recognize that COTS components are one potential strategy in a complex solution 

space.  Trade offs need to be made when selecting COTS products.

b. The term COTS should only be applied when source code is unavailable and 

maintenance is impossible except by its vendor.  COTS should not be confused with other terms 

such as Government off the Shelf (GOTS) and Modified off the Shelf (MOTS).

c. A COTS bias will have an impact on specification of requirements.  Someone must 

choose which requirements can bend to the exigencies of the marketplace and which cannot.

d. Understand the COTS impact on the integration process.  The phrase "plug and play" 

is the unspoken motivator for much of the current interest in COTS.  However, vendors tend to 

keep data details private.

e. Understand the COTS impact on the testing process. What types of testing at the unit 

level and system level are possible utilizing COTS?  What types of testing at the unit level and 

system level are necessary?

f. Realize that a COTS approach makes a system dependent on the COTS vendors.



69

g. Realize that maintenance is not free.  Version upgrades must be supported - ignoring 

new releases can not survive in the long run.

h. COTS have been designed to work stand alone, not integrated.  A COTS based 

system is still a system with its own requirements - the system needs to be designed, integrated, 

tested and maintained.

i. Recognize hidden costs: understanding COTS products as system components; 

market research to find COTS products; product analyses to select among alternatives; licenses 

and warranties; product integration; revisions; coordination of support vendors; recovery when a 

vendor discontinues a product or goes out of business.

j. The shift from building from scratch to integration of ready-made components is a 

significant paradigm shift for programmers and system developers.  It is not just a technical 

change; there are organizational impacts; it is a shift from a producer to consumer mentality.

Dorofee (1997) discussed the lessons learned by the SEI in application of its risk 

management program.  The SEI's risk management program identifies five functions in risk 

management: identify, plan, track, control, and communicate.  Lessons learned include: (1) Put 

risks in writing since written risks are harder to ignore than verbal concerns., and use a risk 

information sheet to document risks; (2) Perform quantitative analysis only when necessary; it is

only needed for risks that require numerical justification or rationale for mitigation planning; (3) 

Group related risks; (4) Prioritize and sort risks  since not all risks can be mitigated; (5) Have 

metrics and measures to track both the risk and the mitigation plan.  Spreadsheets that summarize 

all open risks are good for an overall view of the program's risks; and (6) Use databases to 

document risks, problems, schedules and change tracking, collect and analyze lessons learned.

Carney, Morris, and Place (2003) reported that some programs like the Hubble Space 

Telescope program successfully employed more than 30 COTS programs.  However, there are 

other programs where COTS contributed to a lack of success.  The SEI has developed a COTS 

Usage Risk Evaluation (CURE) tool to evaluate the risk of using COTS with large software 

programs.  Some examples of risk factors that should be considered are successful use on other 

programs, vendor support (present and future), and existence of user groups. 

Boehm (2002) explained that there are risks involved in using agile methods, especially 

without any planning or discipline.  Both agile and plan-driven methods have a home ground for 

which they work best.  For most programs, there is a balance somewhere between the two 



70

methods, and agile development does present risks; it is not a nostrum for all software 

development difficulties.  (Of course, that is true of any SPI method.)



71

4. Detailed Research

As Section 3 demonstrates, there is a significant amount of evidence to show that, with a 

properly run SPI program, software development organizations can dramatically reduce cycle 

time, reduce development costs, improve quality, reduce maintenance costs, improve employee 

morale, and improve company competitiveness.  Rozum (1993) developed a benefit index for 

quantitatively measuring the benefits of an SPI program. 

This Section presents a spreadsheet model of the savings and return on investment (ROI) 

that can be achieved with the SPI programs outlined in Section 3.  This spreadsheet enhances a 

previously developed COCOMO size and cost estimating spreadsheet.  With this spreadsheet, 

one can evaluate several different process improvement methods, evaluate primary and secondary 

benefits, as well as estimate the size and cost of the software. The spreadsheet was developed 

under Microsoft Excel®.  (Details on using this spreadsheet can be found in Appendix A.)

Table 4.1 identifies many of the key parameters necessary to model ROI estimates for the 

SPI methods in this Section.  The values of these parameters represent values before 

improvements are made.  Many of the SPI methods require training and incur other costs that are 

a function of the number of personnel in the development staff.  “Project Staff Size” identifies 

the staff size being modeled.  The value shown (28 personnel) is derived directly from the 

schedules in the COCOMO cost estimation spreadsheet.  “Lines of Code” are calculated directly 

from the COCOMO size estimation spreadsheet.  Since many process improvements increase the 

productivity of development staff, code size is an important driver in the ROI model. “Average 

Staff Hour Cost” is derived directly from the COCOMO cost estimation spreadsheet and is used 

to convert labor manpower estimates to costs.  Many SPI methods reduce the number of defects 

induced into a product; thus reducing rework costs.  Defect rates are measured in terms of 

“Average Defects per KSLOC.”  Several sources such as (Basili, 1994) and (Curtis, 1995) have 

shown that 7 defects per KSLOC is a typical defect rate throughout the development process for 

new code.  The “Software Defect Removal Efficiency” measures the percentage of the induced 

defects that are removed during the development process.  Jones (1996) states that the average 

United States software development organization removes only 85% of defects induced prior to 

release to the customer. That means that of the 7 defects/KSLOC induced, 1.05 defects/KSLOC 



72

are left in the product when the customer receives it.  SPI methods improve this efficiency and 

thus reduce maintenance costs.

SPI Model Parameter Model/Typical Value

Project Staff Size 28 Personnel

Lines of Code 39,967 LOC

Average Staff Hour Cost $39.00

Average Defects per KSLOC in New Code 7

Software Defect Removal Efficiency 85%

Table 4.1: Parameters to Software Process Improvement Model

4.1 Modeling the Cost Benefit of Software Process Improvement

In Section 3.2, SPI was shown to provide a positive ROI for most software development 

organizations.  Jones (2000) has provided the most comprehensive model for establishing ROI 

from SPI. Jones has defined the sequential stages organizations typically move through on their 

way to maturity. In that model, Jones has identified for a given staff size what the costs are per 

employee to achieve each stage, the average length of time organizations remain at each stage, 

the defect improvement realized, the productivity gains achieved and the schedule improvements 

that can be achieved by each stage.

Using the parameters of Table 4.1, Table 4.2 shows the ROI parameters defined by Jones.

The first column shows each stage of the Jones model. The “Pre-SPI” row has been added to 

show the starting values for a given organization with the parameters in Table 4.1. For each 

stage, Table 4.2 shows the estimated cost to achieve that stage, the number of calendar months 

required to achieve that level, the reduction in the estimated number of defects in the product as a 

level is attained, the gains that can be achieved in productivity at each successive level, cycle 

time improvements resulting from the SPI, the reductions in development and maintenance costs, 

and the ROI potential of the improvements. 

The values computed in Table 4.2 are derived from table values of improvement 

percentages as described by Jones.  In this simple example alone, the project could have been 

produced with 95% fewer defects, at greater than 3X the productivity, in 70% less time, 70% less 



73

cost and with 95% less maintenance costs had the product team been utilizing the best software 

process

Table 4.2: ROI Benefits of Software Process Improvement

Demonstrating the value of the software CMM, Jones (2007) has provided a number of 

“rules of thumb” for estimating various attributes of projects, such as effort estimation, schedule 

estimation, defect injection rates, and defect removal efficiencies based on the CMM level of the 

organization performing the project.  Jones utilizes function points extensively as the measure of 

size in his rules of thumb calculations.  These rules of thumb have been implemented in the 

spreadsheet and are shown in Table 4.3.

The top half of Table 4.3 demonstrates the overall rules of thumb parameters as set forth 

by Jones.  Reading from left to right, Jones shows for each CMM level the estimated per person 

cost to reach that CMM level, the number of calendar months to achieve that CMM level, the 

project schedule (computed as the number of Function Points to the “Exponent”), the defect 

injection rate per function point, the percentage of defects that will be removed, and productivity 

(function points per staff month).

From the parameters of Table 4.1, the “Lines of Code” size is converted to function 

points (assuming 128 LOC/FP for the C language), for an estimate of 312 function points.  The 

bottom half of Table 4.3 then apply the rules of thumb for the sample project.  As can be seen, 

Jones would estimate that achieving CMM Level 5 from Level 1 will result in a 28% decrease in 

Estimated  Cost No. of Months Estimated Prod uc tivity Sc hed ule Projec t Projec t ROI (2)
To Rea c h Stage To Reac h Stage Numb er of Defec ts LOC/ Da y Length Development Ma intenanc e

Stage Costs (1) Costs

Pre-SPI 279.77 6 LOC/ Da y 27 Ca lend ar $2,886,543 $475,681
Months

Stage 0 $3,359 2 Months 279.77 6 LOC/ Da y 27 Ca lend ar $2,886,543 $475,681
Assessment/ Months

Ba seline

Stage 1 $50,392 3 Months 251.79 6 LOC/ Da y 27 Ca lend ar $2,886,543 $428,113 0.89:1
Mana gement Months

Stage 2 $50,392 4 Months 125.90 8 LOC/ Da y 24 Ca lend ar $2,248,220 $214,057 8.64:1
Method s/ Pra c tic es Months

Stage 3 $167,974 4 Months 113.31 10 LOC/ Da y 22 Ca lend ar $1,606,442 $192,651 5.74:1
New Tools Months

Stage 4 $33,595 3 Months 107.64 11 LOC/ Da y 21 Ca lend ar $1,443,794 $183,018 5.68:1
Infrastruc ture Months

Stage 5 $16,797 4 Months 16.15 18 LOC/ Da y 17 Ca lend ar $823,992 $27,453 7.79:1
Reusab ility Months

Stage 6 $50,392 6 Months 15.34 19 LOC/ Da y 17 Ca lend ar $780,174 $26,080 6.85:1
Industry Lead ership Months

Tota l Impa c t $372,902 26 Months 95% Red uc tion 222% Inc rease 37% Red uc tion 73% Red uc tion 95% Red uc tion



74

the project schedule, a 140% reduction in defects being induced into the software, an 11X 

reduction in defects to be found and repaired in maintenance, and a 2X reduction in effort to 

complete the project.

Project  Schedule Monthly Productivity

Est imated Cost Calendar Months Defect  Potent ial Removal FP Per

CMM Level To Reach Level to Reach CMM Level Exponent Per FP Efficiency Staff month

CMM Level 1 $0.00 0 Months 0.45 6.00 85% 3.00

CMM Level 2 $3,500.00 18 Months 0.44 4.50 89% 3.50

CMM Level 3 $3,000.00 18 Months 0.43 4.00 93% 5.00

CMM Level 4 $3,500.00 12 Months 0.42 3.00 95% 7.50

CMM Level 5 $2,000.00 12 Months 0.41 2.50 97% 9.00

This Project Est imated Cost Calendar Months Defects Remaining Est . Staff

To Reach Level to Reach CMM Level Est . Schedule Length Est . Defects At Product Release Months Required

CMM Level 1 $0.00 0 Months 13 Calendar Months 1873 Defects 281 Defects 104 Staff Months

CMM Level 2 $124,245.53 18 Months 13 Calendar Months 1405 Defects 155 Defects 89 Staff Months

CMM Level 3 $106,496.17 18 Months 12 Calendar Months 1249 Defects 87 Defects 62 Staff Months

CMM Level 4 $124,245.53 12 Months 11 Calendar Months 937 Defects 47 Defects 42 Staff Months

CMM Level 5 $70,997.44 12 Months 11 Calendar Months 781 Defects 23 Defects 35 Staff Months

Total Impact $425,984.67 60 Months 26% Improvement 140% Improvement 1100% Improvement 200% Improvement

Cost / person and Time to CMM Level Defect  Potent ial and Removal Efficiency

Table 4.3: ROI Benefits of Software CMM

4.2 Modeling the Benefits of Specific processes

This Section shows how the quantitative benefits of specific processes may be modeled.  

The four processes investigated here are inspections, reuse, Cleanroom software development, 

and agile development.

4.2.1 Benefits of Inspections

The cost of repairing a defect is cheapest if the defect is detected close to the point of its 

insertion.  If, for example, design defects are not discovered until the test or maintenance phase 

of a project, the cost to repair the defect is significantly greater than if the defect is discovered 

during the design phase.  The objective, and thus the benefit, of formal inspections is to find 

defects at or near their points of insertion.

Table 4.4 defines an anticipated defect rate of 7 defects/KSLOC for 39.967 KSLOC 

which results in 280 estimated defects.  Table 4.4 computes and compares the total rework costs 

caused by defects being discovered and repaired following a formal inspection process or by 

following an informal inspection process.  Total rework costs are computed based on three 

parameters

• The total number of defects detected in phase i , di

• The amount of time, in hours, to detect an error in phase i , ti



75

• The average hourly labor rate to fix an error, R

The total rework costs, RC , is defined in terms of these parameters:

RC = R  diti

Table 4.4 computes defects detected by phase and rework hours in each phase. As stated 

by Curtis (1995) and depicted in Table 4.4, 35% of defects induced into a system occur during 

the design of the software and 65% during the coding phase.  Table 4.4 also shows that, as 

described by Jones (1996), formal inspections detect 65% of design defects and informal 

inspections detect 40% of design defects. Assuming equal amount of rework per defect between 

formal and informal inspections, in total, more rework occurs in formal inspections; however,

more defects remain with informal inspections for the next phase.  Jones (1996) has stated that 

formal code inspections remove 70% of all defects remaining, whereas code walkthroughs 

remove 35% of defects remaining. More defects are found by the formal method than the 

informal method. Significantly fewer defects remain in the software for detection during the test

stage following the formal methodology.  Curtis (1995) observes that defects found during the 

test phase are 10X as expensive to correct as during the earlier stages. A significant labor 

savings thus occurs with the formal methodology. Jones (1996) has stated that the average 

organization removes 85% of the defects before customer release, whereas organizations 

utilizing inspections typically remove 95% or more of the defects prior to release.  This effect is 

also modeled in Table 4.4. Curtis (1995) stated that repairing defects in a released product costs 

anywhere from 80X to 100X as much as at the time of their insertion.

Another benefit of inspections is that product developers and designers attend inspections 

of their products. Developers learn that certain types of errors tend to occur repeatedly in their 

products. As a result those types of errors do not appear again and the products become more 

error free at the time of inspection. The average number of defects per KSLOC will thus 

decrease.

McCann (2004) presents a detailed cost model for evaluating the effectiveness of code 

inspections.  In McCann’s model, inspection costs consist of inspection fixed cost, preparation 

and meeting costs, and rework costs when defects are found.  The benefits from inspections are 

reductions of regression testing fixed costs and test rework and regression costs.  Based on 



76

simulated data, McCann concluded that for inspections the benefits almost always outweigh the 

costs, and ROI factors of up to 20 can be realized. 

El Emam (2005) has developed a comprehensive ROI model which includes the 

effectiveness of inspections.  For both design and code inspections, the effectiveness rate is 57%; 

this percentage of defects present in design or code that are found.  Furthermore, El Emam 

estimates the effort to find and correct a defect during design or code inspections is 1.5 person-

hours compared to 6 person-hours during testing.  El Emam’s model is based on extensive data 

from industry, so the positive ROI from using inspections appears to be valid for a wide range of 

programs.

4.2.2 Modeling the Effects of Reuse

Software reuse provides two cost benefits to the software manager.  First, reusing code 

means that the reused product does not have to be developed and thus less effort and cost is 

required.  Second, reused code has less defects/KSLOC than new code. 

These double effects are shown in Table 4.5.  This table shows four identical products 

with varying levels of reuse, from 0% to 90%.  Lim (1994) states that reused code requires 

between 10% and 63% of the development effort as new code.  For purposes of this example, 

30% has been selected as the equivalent ratio.  As can be seen on the line titled “Equivalent 

Cost”, $1.6 million in development costs can be saved by improving reuse to a 90% level.  As 

stated by Card (1994), successful reuse programs have achieved a 30 to 80% reuse level. Reuse 

at the levels shown in Table 4.5 is thus possible. 



77

Formal Informal

Inspect ions Inspect ions

% Defect s Int roduced 35% 35%

Tot al Defect s Int roduced 98 Defect s 98 Defect s

% Defect s Det ect ed 65% 40%

Defect s Det ect ed 64 Defect s 39 Defect s

Rework Hours/ Defect 2.9 St af f  Hours 2.9 St af f  Hours

Total Design Rework 185 Staff Hours 114 Staff Hours

% Defect s Int roduced 65% 65%

Tot al Defect s Int roduced 182 Defect s 182 Defect s

% Defect s Det ect ed 70% 35%

Defect s Det ect ed 151 Defect s 84 Defect s

Rework Hours/ Defect 2.9 St af f  Hours 2.9 St af f  Hours

Total Coding Rework 440 Staff Hours 245 Staff Hours

Defect s Found in Test 51 Defect s 114 Defect s

Rework Hours/ Defect 29.1 St af f  Hours 29.1 St af f  Hours

Total Test  Rework 1478 Staff Hours 3326 Staff Hours

% of Defects Removed

Defect s Lef t  for Cust omer 14 Defect s 42 Defect s

Post  Release Defect s/ KSLOC 0.35 Defect s/ KSLOC 1.05 Defect s/ KSLOC

Rework Hours/ Defect 290.6 St af f  Hours 290.6 St af f  Hours

Total Maintenance Rework 4066 Staff Hours 12197 Staff Hours

Total Rework 6168 Staff Hours 15881 Staff Hours

Total Rework Costs $240,560 $619,369

Total Savings $378,809

Phase

Design

Coding

Test

Maintenance

Totals

95% 85%

Table 4.4: Effects of Inspections on Rework



78

In the block titled “Estimated Maintenance Costs”, the impact of less rework on reused 

code is shown. When combined with lower development effort, increasing the levels of reuse 

results in a $1.8 million (68%) cost savings.  Rework costs are estimated in a similar fashion to 

Table 4.5.  However, reused code has been observed by Lim (1994) to have less than 1 

error/KSLOC. This impact on the reused code is taken into consideration in computing rework 

costs.

Table 4.5: The Effects of Reuse on Development Effort and Rework

Jones (2000) has shown that achieving significant reuse can not be achieved until Stage 5 

of process improvement cycle.  This means that achieving significant levels of reuse can not 

occur until a stable software development process is achieved and that could take many months. 

For example, in Table 4.5 significant levels of quality reuse will not occur until month 20.  The 

benefits of reuse can not be achieved until reusable software is available.  Reusable software 

costs more to develop than traditional software, because an additional design constraint - making 

the software reusable - is added to the software requirements.  Lim (1994) has observed that 

development of reusable software costs between 111% and 200% of traditional software.

Boehm, et al (2000) shows the effects of reuse in the now-famous COCOMO II software 

cost estimating model by calculating an “equivalent size” in thousands of source lines of code 

(KSLOC) from reuse.  According to Boehm (2000), adapted code is preexisting code that is 

treated as “white box” and is modified for use with a product.  Variants of the two reuse 

equations are:

Without Reuse With Reuse With Reuse With Reuse

Estimated  SLOC 39,967  LOC 39,967  LOC 39,967  LOC 39,967  LOC
% Reuse 0% 30% 60% 90%
Equiva lent Ra tio on Reuse 30% 30% 30% 30%
Equiva lent Code 39,967  LOC 31,574  LOC 23,181  LOC 14,788  LOC
Coc omo Effort Estimate 487 Sta ff Months 374 Sta ff Months 265 Sta ff Months 160 Sta ff Months
Equiva lent Cost $2,886,543 $2,216,769 $1,568,258 $947,903
Sc hed ule Leng th 27 Ca lenda r Months 24 Ca lend ar Months 21 Ca lenda r Months 18 Ca lend ar Months
Estimated  Rework

New Code $240,560 $168,392 $96,224 $24,056
Reused Code $0 $10,310 $20,619 $30,929
Tota l Rework $240,560 $178,702 $116,843 $54,985

Estimated  Ma intena nc e Costs $158,560 $117,788 $77,015 $36,242
Develop ment Effort + Ma intenanc e$3,045,104 $2,334,557 $1,645,273 $984,146
Savings of Reuse over No Reuse $710,547 $1,399,831 $2,060,958
% Red uc tion 23% 46% 68%



79

1) Equivalent KSLOC = Adapted KSLOC  x (AA + AAF + (SU x UNFM) / 100)  for 
AAF >50

2) Equivalent KSLOC = Adapted KSLOC x (AA + AAF x (1 + .02 x SU x UNFM) / 100)
For AAF <=50

Where,
AA = Assessment and Assimilation increment, from 0 to 8
AAF = Adaptation Adjustment Factor (AAF = 0.4 x DM + 0.3 x CM + 0.3 x IM)
SU = Software Understanding increments, from 10 to 50
UNFM = Programmer unfamiliarity with software, from 0 to 1
CM = Percent code modified
DM = Percent design modified
IM = Percent Integration required for the adapted software
Adapted KSLOC = Adapted code, in thousands of source lines of code.

These equations show that reuse effort is not linearly related to AAF, and even “minor” 

modifications can require considerable effort if values of AA, SU, and UNFM are relatively high.  

If the software is not modified, as is the case of COTS software, DM and IM are 0, and SU and 

UNFM are also 0, so savings are generally more pronounced.

Jensen (2004) presents a simplified equation for assessing the costs to develop a reusable 

component and the savings from using this component.  Jensen’s equation is:

C = (1 - R) + (b + a / n) x R

Where C is the reuse cost factor, R is the portion of the system to have the reused code, b is the 

relative cost of incorporating the reused code into the system, a is the relative cost to develop a 

reusable component (which usually is between 1 and 2), and n is the number of times the 

component is reused.  As long as (b + a/n) is less than 1, C will be less than 1, and there will be a 

positive cost incentive.  Of course, if the component has already been developed, the reuse will 

be more positive.  This does show, however, that developing software for future reuse is more 

costly than developing software without reuse considerations, and the savings do not occur until 

the software is actually reused.  In the COCOMO II model, a reuse parameter (RUSE) captures 

the effort to develop for future reuse.  This can add 24% to software development effort if the 

software program is to be used across multiple product lines. 

An extension of reuse which is gaining increased attention is software product lines.  

Boehm, Brown, et al (2004) have developed a Constructive Product Line Investment Model 

(COPLIMO) to estimate the cost benefits of product lines.  COPLIMO is an extension of 



80

Boehm’s COCOMO II software cost estimating model (Boehm, 2000).  In this model, the cost of 

developing (or writing) software for product line reuse is 

PMR = PMNR x (PFRAC + RCWR x (AFRAC + RFRAC))

Where,
PMR = Person-months (of effort) for reused software
PMNR = Person-months if software will not be reused (the nominal case)
PFRAC = Product-specific fraction of software size (typically 0.4) 
AFRAC = Adapted fraction of software size to make product work well (typically 

0.3)
RFRAC = Reused fraction of software size, usable as a “black box” (typically 0.3)
RCWR = A product of increased COCOMO II effort multipliers for reuse 

(RUSE), reliability (RELY),and documentation (DOCU) required for product 
line reuse (typically 1.5 to 2.0)

The added effort for future reuse will typically be 40% to 60% of the development effort without 

reuse considerations.  However, the savings are realized in a decrease of equivalent KSLOC for 

future product line software programs.  The ROI breakeven point is usually 2 to 3 future 

programs.

Bockle, et al (2004) describe an economic model for calculating ROI for establishing 

product lines.  Their general equation for establishing and producing a product line of n products 

is:

C (Org) + C (Cab) +  C (Unique Pi) +  C (Reuse Pi)

while the cost of producing n individual products is 

 C (Prod)

Where,
C (Org) = Cost of an organization to adopt a product line approach
C (Cab) = Cost to develop a core asset base for a product line being built
 C (Unique Pi) = Sum of costs for product unique software for n products.
 C (Reuse Pi) = Sum of costs to reuse core assets for n products.
 C (Prod) = Sum of costs of developing n individual products.

ROI is the cost savings divided by the cost of investment, or (Cost of old way – cost of new way) 

divided by (C(Org) + C (Cab)).

In the example presented, where an organization has developed a set of independent 

products and wants to look at the benefits of using a product line approach where, in person-

months, C (Prod) = 12, C (Org) = 2.4, C (Cab) = 13, C (Unique) = 0.72, and C (Reuse) = 0.84, 



81

the ROI is – 34.3% for 1 product, but is + 38.1% for 2 products, and increases to 618.0% for 10 

products.  Of course, actual program values may vary, but this does show that a positive ROI can 

occur after as few as 2 new programs are developed.  

According to Galorath (2007), the effective size of the existing software can be 

determined using the formula:

Effective size = existing size × (0.4 × redesign % + 0.25 × reimplementation % + 0.35 × 

retest %).

This equation is similar to Boehm’s AAF discussed above, but computing the percentages 

is elaborated in Table 4.6.  In most cases, the effective size with reuse will be less than the size of 

an equivalent program being developed from scratch, which results in lower cost and a shorter 

schedule.

4.2.3 Modeling the Effects of Cleanroom Software Development

Hausler (1994) observes that the Cleanroom methodology increases productivity between 

1.5X and 5X. Sherer (1996) has observed a 3.62X productivity increase with the Cleanroom 

methodology.  This productivity increase effect is modeled in Table 4.7 through the equivalent 

ratio factor, utilizing the value as reported by Sherer. In this table, three different approaches are 

examined: with Cleanroom methods, traditional methods with formal inspections, and traditional 

methods with informal inspections (walk-throughs).



82

Redesign Breakdown

Formula to compute redesign 
percentage:

0.22 x  A x  0.78 x B + 0.5 x C + 0.3 x 
(1-(0.22 x A + 0.78 x B) x (3 x D x E)/4

Weight Redesign Component Definitions

0.22 Architectural design change (A) Percentage of preexisting software requiring
architectural design change

0.78 Detailed design change (B) Percentage of preexisting software 
Requiring detailed design change

0.5 Reverse engineering required (C) Percentage of preexisting software not familiar 
to developers; requires understanding and/or 
reverse engineering to achieve modification

0.225 Re-documentation required (D) Percentage of preexisting software requiring 
design re-documentation

0.075 Revalidation required (E) Percentage of preexisting software requiring 
revalidation with new design

Reimplementation Breakdown

Formula to compute re-
implementation percentage:

0.37 x F + 0.11 x G + 0.52 x H

Weight Reimplementation Component Definitions

0.37 Recoding required (F) Percentage of preexisting software requiring 
actual code changes

0.11 Code review required (G) Percentage of preexisting software needing
code reviews

0.52 Unit testing required (H) Percentage of preexisting software requiring 
unit testing

Retest Breakdown

Formula to compute retest 
percentage:

0.10 x J + 0.04 x K + 0.13 x L + 0.25 x M + 
0.36 x N + 0.12 x P

Weight Retest component Definitions

0.10 Test plans required (J) Percentage requiring test plans to be rewritten
0.04 Test procedures required (K) Percentage requiring test procedures to be 

identified and written
0.13 Test reports required (L) Percentage requiring documented test reports
0.25 Test drivers required (M) Percentage requiring test drivers and 

simulators to be rewritten
0.36 Integration testing (N) Percentage requiring integration testing
0.12 Formal testing (P) Percentage requiring formal demonstration 

testing

Table 4.6:  Redesign, Reimplementation, and retest Breakdown



83

Like software inspections, the Cleanroom methodology also results in lower rework and 

maintenance costs. The impact of this is shown in Table 4.8. The first effect to be noticed is that 

Basili (1994) has observed that the average number of defects decreases from 7 to 5 

defects/KSLOC. Fewer defects are thus induced into the software. This spreadsheet model also 

demonstrates, as shown by Linger (1993), that software typically enters the test phase with near 

zero defects. The costs for testing and maintenance are thus significantly reduced.

Cleanroom Formal Informal
Methodology Inspections Inspections

Estimated SLOC 39,967  LOC 39,967  LOC 39,967  LOC
Equivalent Ratio 22% 100% 100%
Equivalent Code 8,651  LOC 39,967  LOC 39,967  LOC
Effort Estimate 75 Staff Months 419 Staff Months 419 Staff Months
Equivalent Cost $447,175 $2,482,427 $2,482,427

Table 4.7: Comparison to Cleanroom Development Costs

4.2.4 Modeling the Effects of Agile Software Development

Boehm and Turner (2004) show that a parameter in the COCOMO II cost model (Boehm, 

et al, 2000), Architecture and Risk Resolution (RESL), may be affected by the degree of agile 

methods in a program.  RESL is a combined measure of how well architecture is defined early in 

a program and how much risk reduction has taken place.  For planned (versus agile) programs, 

RESL will be better and probably result in less rework, but will incur much up-front effort.  

There is a ‘sweet spot’, a balance between using planed and agile methods, which will result in 

the lowest development cost.  This balance tends toward a greater portion of agile methods for 

smaller programs, and toward planned methods for large programs, especially those for which 

requirements remain relatively stable.



84

Cleanroom Formal Informal

Methodology Inspections Inspections

Lines of  Code 39,967  LOC 39,967  LOC 39,967  LOC

Average # Defect s/ KSLOC 5 Defect s/ KSLOC 7 Defect s/ KSLOC 7 Defect s/ KSLOC

Tot al Defect s Expect ed 200 Defect s 280 Defect s 280 Defect s

Design

% Defect s Int roduced 35% 35% 35%

Tot al Defect s Int roduced 70 Defect s 98 Defect s 98 Defect s

% Defect s Det ect ed 80% 65% 40%

Defect s Det ect ed 56 Defect s 64 Defect s 39 Defect s

Rework Hours/ Defect 2.5 St af f  Hours 2.5 St af f  Hours 2.5 St af f  Hours

Tot al Design Rework 140 St af f  Hours 159 St af f  Hours 98 St af f  Hours

Coding

% Defect s Int roduced 65% 65% 65%

Tot al Defect s Int roduced 130 Defect s 182 Defect s 182 Defect s

% Defect s Det ect ed 98% 70% 35%

Defect s Det ect ed 141 Defect s 151 Defect s 84 Defect s

Rework Hours/ Defect 2.5 St af f  Hours 2.5 St af f  Hours 2.5 St af f  Hours

Tot al Coding Rework 353 St af f  Hours 378 St af f  Hours 211 St af f  Hours

Test

Defect s Found In Test 1 Defect s 51 Defect s 114 Defect s

Rework Hours/ Defect 25.0 St af f  Hours 25.0 St af f  Hours 25.0 St af f  Hours

Tot al Test  Rework 22 St af f  Hours 1271 St af f  Hours 2861 St af f  Hours

% of  Defect s Removed 99% 95% 85%

Maintenance

Defect s Lef t  for Cust omer 2 Defect s 14 Defect s 42 Defect s

Post  Release Defect s/ KSLOC 0.05 Defect s/ KSLOC 0.35 Defect s/ KSLOC 1.05 Defect s/ KSLOC

Rework Hours/ Defect 250.0 St af f  Hours 250.0 St af f  Hours 250.0 St af f  Hours

Tot al Maint enance Rework 500 St af f  Hours 3497 St af f  Hours 10491 St af f  Hours

Maint enance $ $19,484 $136,386 $409,159

Totals

Tot al Rework 1014 St af f  Hours 5306 St af f  Hours 13660 St af f  Hours

Tot al Rework Cost s $39,544 $206,918 $532,752

Effort  $  + Maint enance $ $466,659 $2,618,814 $2,891,586

$ Improvement  for Cleanroom $2,152,155 $2,424,927

% Improvement  Over Cleanroom 82% 84%

Table 4.8: Rework and Maintenance Costs in Cleanroom

Boehm and Turner (2004) also examined the results of pair programming, a characteristic 

of XP and agile development.  Pair programming tended to increase effort, but reduce schedule 

and defect rate.  One possible consequence of pair programming is improved morale and 



85

teamwork, which are accounted for in several COCOMO II parameters including personnel 

continuity (PCON) and team cohesion (TEAM).  Higher ratings for these parameters result in 

reduced effort and schedule.

Jones (2007) states that about 15% of the current programs of less than 1,000 function 

points (or about 50,000 lines of Java code) are using agile methods.  He has presented the 

following rules of thumb for agile projects.  Some of the metrics are based on an “average” size 

agile program which is 500 function points, or about 25,000 lines of Java code:

 Agile projects start with a two-week planning period.

 Five increments of 100 function points, one every two weeks.

 Agile projects start with a two-week planning period.

 Typical schedules in months are function points raised to the 0.33 power.

- For 500 function points, the schedule will be 7.7 months.

 A typical agile assignment scope is 100 function points.

 Agile teams usually consist of five people.

 The average agile production rate is 36 function points per month.

 Defect potentials are about 3.5 per function point.

 Defect removal efficiency (defects removed before deployment) is about 92%.

 The bad fix injection rate is about 2%.

 Delivered defects average 0.34 per function point.

 The average agile program, once deployed, can be maintained by a single programmer.

Jones also provides some rules of thumb for XP and Scrum, which are agile development 

methods.

Of course, any rules of thumb should be used with caution since they only represent 

averages and individual programs often vary considerably from averages; however, these 

averages can be used to obtain a coarse estimate for a new agile program.  Also, the rules of 



86

thumb show that agile methods are usually superior to traditional methods in areas such as 

schedules, staffing required and delivered defects.

4.3 Modeling Secondary Benefits of Process Improvements

The cost impact of many secondary benefits of software process improvement can be 

estimated.  This Section will examine the cost impact of improved schedules, improved staff 

retention and turnover, customer satisfaction, and reduced risk.

4.3.1 Cost Benefit of Improved Schedules

In contract software development work, contracts may be negotiated with bonuses and 

penalties built in to the contract based on an assumed delivery date.  Given an increased ability to 

deliver ahead of schedule with process improvements, organizations could benefit financially 

from bidding on award fee or bonus-type contracts.  If, however, an organization is typically late 

with deliverables, and incur penalties, comparing this history with the likely bonuses to be 

achieved with the improvements will be to a software development organization’s advantage.  

Table 4.9 shows the Penalties/Bonuses Anticipated without Improvements based on past projects 

and the Penalties/Bonuses Anticipated with Improvements for future projects.  Bonuses and 

penalties may be based on the total value of the contract.  Diaz and Sligo (1997) state that 

finishing projects early also allows their company (a DoD contractor) to apply more resources to 

obtaining more business.  More business would increase project backlog, allow us to hire more 

people, and increase revenues and profits.

Without Improvement With Improvement
Schedule Length (estimated) 23 Calendar Months 18 Calendar Months
Schedule Reduction 5 Calendar Months
(Penalty)/Bonus Anticipated ($50,000) $50,000

Table 4.9: Cost Impact of Early Delivery in Contract Organization

In commercial organizations, product sales and profits are typically modeled and forecast 

by sales groups or some other group based on the anticipated demand for products beginning 

from a given product release date.  Shipping a quality product many months prior to the 

originally scheduled release date may result in being the first to the market with this product or 

potentially increase sales volume because of the early release. This spreadsheet will have to be 



87

discussed with the sales organization to establish likely values.  This analysis is shown in Table 

4.10.

Table 4.10: Cost Impact of Early Delivery in Commercial Organization

Most software estimating models show there is a direct relationship between cost and 

schedule such that, as one increases or decreases, the other will also.  In the original COCOMO 

model (Boehm, 1981), the schedule equation for embedded software systems is:

TDEV = 2.5 (PM) 0.32

Where TDEV is development time in months and PM is effort in person-months.  

The COCOMO II model (Boehm, et al, 2000) has more complex scheduling equations, 

but there is still a direct relationship between schedule and effort.  It should be evident, then, that 

SPI activities that reduce effort will also reduce schedule.  One COCOMO II example is process 

maturity (PMAT), a parameter which has an exponential effect on effort.  PMAT reflects a 

company’s CMM level (discussed earlier) with a “Very Low” rating for CMM Level 1 to “Extra 

High” for CMM Level 5.  The corresponding numerical values range from 7.80 for Very Low to 

0.00 for Very High.  Higher numerical values result in more effort, so a higher CMM rating (or 

CMMI rating) will result in relatively lower effort and schedule.  Also in COCOMO II, reuse 

usually reduces effective software size.  Since there is a direct relationship between size and 

effort, reuse tends to reduce effort and, in turn, schedule.

There are times, however, when practices which reduce schedules may result in increased 

effort.  As reported by Boehm and Turner (1984), pair programming, an agile development 

method, has usually resulted in reduced schedules but increased effort due to an “extra” person 

being needed.  The studies reported, however, were done on very small projects and with little 

“jelling” activity beforehand.  If pair “jelling” is done beforehand, the increase in effort tends to 

be sharply reduced or even eliminated.  Furthermore, pair programming (like inspections) 

reduces defect rates, which can result in cost savings later in a program.

4.3.2 Cost Benefit of Reduced Staff Turnover and Better Staff Retention

It is important to have a highly qualified staff within a software development 

organization.  Yamamura and Wigle (1997) document that employee satisfaction grew from 74% 

Without Improvement With Improvement
Sc hedule Length (estima ted ) 23 Ca lenda r Months 18 Ca lenda r Months
Sc hedule Reduc tion 5 Ca lenda r Months
Projec ted  Sa les $10,000,000 $10,500,000
Add itiona l Sa les $500,000



88

to 96% satisfied because of their improvement efforts.  Broadman and Johnson (1995) observe 

that process improvement results in improved morale and less employee turnover.  Curtis (1995) 

has identified five cost factors that relate to turnover costs: recruiting costs, relocation costs, 

training costs, lost performance until person is replaced, and lower productivity per day from new 

employee. Based on the projects being affected, the loss of key personnel could have a negative 

impact on the personnel qualification factors within the COCOMO model, resulting in increased 

development costs and schedule lengths.  Several analyses are proposed below to address 

turnover costs.

The first analysis relates to company costs that are incurred when personnel leave and 

new personnel need to be hired.  The number of employees that leave a company (or stay with a 

company) is related to employee satisfaction.  The proposed metrics to be analyzed are Yearly 

Turnover Costs Without Improvement and Yearly Turnover Costs With Improvement, and are 

computed based on the spreadsheet in Table 4.11:

Metric Without Improvement With Improvement

Current # Software Eng. 300 employees 300 employees
Employee Satisfaction 74% 96% (est.)
Turnover Ratio 10% 2% (est.)
Number to be Replaced/Year 30 employees 5 employees
Recruiting $/Replaced Emp. $2,500 $2,500
Relocation $/Replaced Emp. $15,000 $15,000
Training $/Replaced Emp. $3,000 $3,000
Average Months to Replace 4 Months 4 Months
Total Recruiting Costs $75,000 $12,500
Total Relocation Costs $450,000 $75,000
Total Training Costs $90,000 $15,000
Yearly Turnover Costs $615,000 $102,500
Savings in Turnover Costs $512,500

Table 4.11: The Cost Impact of Staff Turnover

In this table, current employee satisfaction and turnover ratios may be available from an 

organization’s Human Resources department.  For purposes of this example, estimated 

satisfaction ratios with improvement assume proportional improvements to those noted by 

Yamamura and Wigle (1997).  Estimated turnover ratios after improvement are assumed to be 

inversely proportional to employee satisfaction ratios.  Historical employee satisfaction and 

turnover ratios within an organization should be studied to understand the relationship with 

employee satisfaction.  The turnover ratio is multiplied by the current number of employees to 

compute the “Number to be Replaced/Year.”  Average Months to Replace an employee, and 



89

Recruiting, Relocation and Training costs per replaced employee are based on historical data.  

The “Number to be Replaced/Year” is multiplied by average recruiting, relocation, and training 

costs, and these are summed to compute the Yearly Turnover Costs.

Since key technical contributors to an organization’s projects may be the most heavily 

recruited by outside companies, the cost of the loss of key contributors should be evaluated.  

Since employee satisfaction increases in organizations that employ process improvement 

techniques, the probability that key personnel will leave will decrease.  The COCOMO Model as 

developed in the earlier spreadsheet is used to evaluate the cost and schedule impact on projects 

by adjusting COCOMO personnel adjustment factors.  The values to be compared are 

Development Costs Without the Best Person, or Key-Employee (Without Improvement), 

Development Costs With the Best Person (With Improvement), Schedule Length Without the 

Best Person (Without Improvement), and Schedule Length With the Best Person (With 

Improvement), as shown in  Table 4.12.

Table 4.12: The Value of Key Contributors

In Table 4.12, the values assigned to ACAP, AEXP, PCAP, VEXP, and LEXP are 

standard COCOMO 1.1 definitions (Boehm, 1981) and are established by evaluating the 

personnel capabilities on each project with and without that key individual.  Development costs 

and schedule lengths are computed based on multiplying COCOMO labor estimates with average 

hourly labor rates.  The Development Cost Impact row subtracts Development Costs With Key-

Employee from Development Costs Without Key-Employee.  It highlights the value this 

employee brings to the project. Similarly, the Schedule Length Impact row subtracts Schedule 

Without Improvement With Improvement

Projec t DRAT Without the Best Person With the Best Person
 Cocomo Personnel Attributes
ACAP - Ana lyst Capab ility NOMINAL HIGH
AEXP - Ana lyst Experienc e NOMINAL HIGH
PCAP - Programmer Capab . LOW LOW
VEXP - Team Exp. w/ VM LOW LOW
LEXP - Team Exp. w/ HOL NOMINAL HIGH
Development Costs $2.9M $2.2M

Development Cost Impac t $0.7M Less
Schedule Length 27 Ca lendar Months 24 Ca lendar Months
Sc hedule Length Impac t 3 Months Less



90

Length With Key-Employee from are Schedule Length Without Key-Employee.  It highlights the 

impact this individual has on delivering product earlier.

COCOMO II (Boehm, et al, 2000) has added two more personnel parameters, Team 

Cohesion (TEAM) and Personnel Continuity (PCON). TEAM (like PMAT discussed earlier) has 

an exponential effect on effort (and schedule), and reflects the ability of the development team to 

interact.  The ratings range from “Very Low” for teams with very difficult interactions to “Extra 

High” for seamless interactions.  The corresponding numerical values range from 5.48 for Very 

Low to 0.00 for Extra High.  Higher numerical values result in more effort, so having a cohesive 

team will result in relatively lower effort and schedule.  For PCON, a linear effort multiplier, 

ratings range from “Very Low” for a high turnover rate of 48% per year to “Very High” for a low 

turnover rate of 3% per year.  The corresponding numerical values range from 1.29 for Very Low 

to 0.81 for Very High.  Higher numerical values result in more effort, so having a lower turnover 

rate will result in relatively lower effort and schedule.  Usually, SPI practices will result in higher 

morale, higher team cohesion, and lower turnover rates.  

4.3.3 Cost Benefit of Improved Customer Satisfaction

Although mentioned as a benefit of process improvement by others (e.g., Diaz and Sligo 

(1997), Brodman and Johnson (1995)), no specific repeat business dollar values have been 

attributed to process improvement in the literature.  To establish the Repeat Business analysis 

shown in Table 4.13, other projects within an organization will have to be investigated, 

examining post-release defects, schedule performance, and dollar value of new work received 

from customers.  Alternatively, the repeat business achieved by competitors who use more 

modern methods, with higher software quality, and better cycle times could be evaluated to 

develop an estimate of the dollar value of Repeat Business with and without improvement.

Without Improvement With Improvement
Repeat Business $1,000,000 $5,000,000
Additional Business $4,000,000

Table 4.13: Repeat Business

Ceschi, et al (2005) studied the effects of agile development, an SPI activity, on customer 

satisfaction.  This area is important because, based on a survey of more than 8,000 projects, five 

of the top six reasons for failure stem from communication problems between the development 

team and the customer.  Agile methods help alleviate these problems because customers are 



91

usually on-site and directly available for feedback.  For programs studied, 90% of the customers 

of agile programs were either satisfied or very satisfied while only 70% of the customers for 

traditional plan-based projects were satisfied or very satisfied.  This is an added benefit to using 

agile development methods, which show a positive ROI in many instances.

Boehm, Huang, et al (2004) have developed the Information Dependability Attribute 

Value estimation (iDAVE) model to estimate the ROI of software dependability.  iDAVE uses 

many of the parameters from the COCOMO II model (Boehm, et al, 2000) and from the 

Constructive Quality Model (COQUALMO), an extension of the COCOMO II model, for 

software quality (Boehm, et al, 2000).  One of the key COCOMO II parameters used in iDAVE is 

required reliability (RELY), which is rated from very low to very high depending on the 

consequences of a software failure.  The ratings (and numerical values) are: very low (0.82) for a 

slight inconvenience, low (0.92) for low easily recoverable losses, nominal (1.00) for moderate 

easily recoverable losses, high (1.10) for high financial losses, and very high (1.26) for risk to 

human life.   In a case study for a commercial application, raising RELY from nominal to high 

would add $344,000 to a $3,440,000 program, but the results of the final software product would 

be an increase in mean-time-between-failure from 300 hours to 10,000 hours and a resultant 

decrease in losses over a 5-year period due to downtime of $5,150,000, for a positive ROI of 

14% per year.  Additionally, a customer satisfaction rating on a scale from 0 to 5 would increase 

from the current 1.7 to 4.6 five years later due to fewer late deliveries, greater ease of use, and 

more in-transit visibility.

According to El Emam (2005), assessing the ROI from customer satisfaction is 

challenging because few software companies collect customer satisfaction data, and because 

customer satisfaction usually involves more than a product itself, such as service and vendor 

reputation.  Still, other research has shown that some SPI practices can result in increased 

customer satisfaction and a positive ROI.

4.3.4 Cost Benefit of Reduced Risk on Software Projects

The risks and potential cost impacts of improving the software organization can be 

compared with the risks and potential cost impacts of not improving.  Strassman (1990) makes 

the following three statements which suggest the importance, from a management perspective, of 

risk analysis: "By making the risks of technology more explicit, you create a framework for 

diagnosing, understanding and containing the inherent difficulties associated with technological 

and organizational innovation," "The best way to avoid failure is to anticipate it," and "Risk 

analysis is the correct analytical technique with which one can examine the uncertainty of 



92

Information Technology investments prior to implementation."  Dorofee (1997), in discussing 

lessons learned from applying the SEI’s risk management program, states that written risks are 

harder to ignore than verbal concerns.  He suggests that a risk information sheet, like the one 

described below, be used to document risks.

Especially within the DoD, use (reuse) of COTS software is viewed by many as a silver-

bullet to reduce the escalating costs of software development, reduce cycle time, and improve 

quality.  As noted by Carney and Oberndorf (1997), use of COTS products may be beneficial or 

it may cause greater problems.  The authors noted many risks that need to be considered in 

selecting COTS products.  Those risks are summarized in the “Risk Description” column of 

Table 4.14, the following risk assessment spreadsheet:

Risk Risk Potential Weighted
Number Description Cost Likelihood Cost

6 Product Not Available for life of my product. $2,500,000 HIGH $1,875,000
10 COTS Does Not Integrate With Other COTS. $2,000,000 MEDIUM $500,000

5 COTS Products Has Critical Bugs. $5,000,000 LOW $250,000
8 COTS Vendor Goes Out Of Business. $5,000,000 LOW $250,000
1 Improperly Planned Use of COTS. $2,500,000 LOW $125,000

11 Improper Market Research of COTS. $2,500,000 LOW $125,000
7 Vendor Stops Support of Product. $2,000,000 LOW $100,000
9 Future Incompatibilities with Hardware. $2,000,000 LOW $100,000
3 COTS Don't Meet Requirements. $1,250,000 LOW $62,500
4 COTS Not Plug-And-Play. $1,250,000 LOW $62,500

2 COTS will need modification to work. $200,000 MEDIUM $50,000

Table 4.14: Risks of COTS Reuse

The values in the columns of Table 4.14 are merely exemplary.  Each risk is assigned a number 

and is placed in the column titled “Risk Number”.  The “Potential Cost” column defines the 

maximum impact should the risk actually occur.  The probability of the risk happening is defined 

in the “Likelihood” column, where the values HIGH, MEDIUM and LOW are actually assigned a 

value between 0 and 1.  The Weighted Cost column is computed by multiplying the “Potential 

Cost” column by the “Likelihood” column.

Since any change has risks associated with it, other risks of process improvement are 

shown in Table 4.15 below.  These risks are failures to achieve the expectations we have for our 

process improvement efforts.



93

Risk Risk Potential Weighted

Number Description Cost Likelihood Cost

2 Poor Training in New Methods $1,000,000 LOW $50,000

6 Unable to Achieve Rework Reduct ions $900,000 LOW $45,000

4 Inabilit y to Achieve Product ivit y Goals $750,000 LOW $37,500

5 Unable  t o Achieve Cycle Time Improvements $500,000 LOW $25,000

3 Inabilit y of Staff to Change $250,000 LOW $12,500

1 Inabilit y to Get  Management  Support $100,000 LOW $5,000

Table 4.15: Software Process Improvement Risks

Many risks are associated with not improving, including loss of key employees, increased 

staff turnover, cost overruns, and late delivery of product.  The impacts of these risks are 

summarized in the risk assessment spreadsheet in Table 4.16.

Table 4.16:  Risk Assessment of Not Performing Improvements

Given that the number and the complexity of the risks with any proposed course of action 

can become large, the proposed methods for presentation of the risks are with Weighted Risk 

Likelihood values.  For each proposed method, the Weighted Risk Likelihood value is defined as 

the sum of all weighted costs for each likelihood category.  As an example, the Reuse of COTS 

Risks from Table 4.17, would be represented as follows

Weighted

Likelihood Cost  Sum

HIGH $1,875,000

MEDIUM $550,000

LOW $1,075,000

Table 4.17: Weighted Risk Likelihood for COTS Reuse

This data would be graphed as shown in Figure 4.1 below.  Management is most likely 

concerned with the risks of high or medium likelihood risks.  This graph will provide 

management an effective way to compare risks of improvements versus no improvements. 

Risk Risk Potential Weighted
Number Description Cost Likelihood Cost

1 Loss of Key Person #2 $700,000 MEDIUM $175,000
2 Loss of Key Person #1 $1,000,000 MEDIUM $250,000
3 Higher Turnover $512,500 MEDIUM $128,125
6 Loss of Market Leadership $500,000 MEDIUM $125,000
7 Loss of Repea t Business $4,000,000 MEDIUM $1,000,000
4 Cost Overruns $500,000 HIGH $375,000
5 No Award  Fees $50,000 HIGH $37,500



94

Figure 4.1: Weighted Risk Likelihood Graph for Use of COTS

In the COCOMO II model (Boehm, et al, 2000), there is a RISK value which reflects a 

weighted sum of schedule, product, platform, personnel, process, and reuse risks.  Generally, 

higher values of RISK correlate with higher effort and schedule values.  When the CMM level 

for the process maturity (PMAT) parameter (discussed earlier) increases from Level 1 to Level 5, 

the RISK value will decrease, as will effort and schedule.  Four RISK values, schedule, process, 

product, and personnel risk, are affected by PMAT.  Another COCOMO II parameter is TOOL, 

the degree of modern tool usage (which increases with SPI).  Higher ratings of this parameter, 

like PMAT, will decrease RISK values, especially for process risk, along with effort and 

schedule estimates.  While the architecture and risk resolution (RESL) parameter (discussed

earlier) does not affect the RISK rating, it does affect effort and schedule; more risk resolution 

and fewer risks present will reduce effort and schedule in COCOMO II. 

Huang and Boehm (2006) describe a model based on the COCOMO II and Constructive 

Quality Model (COQUALMO) called the Value-Based Software Quality Model.  This model is 

an extension of the iDAVE model (Boehm, Huang, et al, 2004) discussed earlier.  This model 

shows when to stop testing and release a product.  There is a “sweet spot”, or minimum risk 

exposure point, which is a product of combined risk exposure of unacceptable quality and market 

share erosion.  Too little testing will result in unacceptable quality while too much testing will 

result in market share erosion because of later deliveries.  This model also shows that risk 

Weighted Risk Likelihood - COTS

$0

$500,000

$1,000,000

$1,500,000

$2,000,000

HIGH LOW

Likelihhod

W
e

ig
h

te
d

 S
u

m
 o

f 
R

is
k

s

Weighted Cost Sum



95

exposure is less when value-based testing is used, which is a Pareto-based approach of spending 

more time testing components (or modules) which have the most impact on system value, instead 

of the traditional value-neutral testing, which treats all components equally.  This model is an 

illustration of the emerging field of value-based software engineering.

4.4 Comparison of Results

Sections 4.2.1 through 4.2.4 address four specific software process improvement 

methods: Fagan Inspections, Software Reuse, Cleanroom Methodology, and Agile Development.

Table 4.18 compares the development costs, rework costs, maintenance costs, SPI costs, ROI, 

and savings resulting for the first three methods. The column titled “Savings” computes the 

savings realized by subtracting “Development Costs” and “Rework Costs” of the method over 

the traditional method.

The cost associated with formal inspections is the cost of a 1.5 day training class in 

inspections. No increase in project costs was observed by any of the authors. Fagan (1986) 

actually saw a 25% reduction in project costs utilizing inspections and this reduction is reflected 

in Table 4.18. 

Lim (1994) stated that for one division at HP, the costs of the reuse program were $1 

million for a 55 KSLOC reuse library, or approximately 76 man-days per KSLOC.  This factor is 

included as the costs associated with the reuse figures in Table 4.18.

Sherer (1996) shows that the costs of the Cleanroom methodology include training and 

coaching costs.  These costs, as shown in Table 4.18, amount to approximately 17% of labor 

costs.

The ROI column is computed as  
Savings

Costs
.

Development CostsRework Costs Maintenance CostsDevelopment + Maintenance Savings SPI Costs ROI
Traditional $2,482,427 $532,657 $409,086 $0

Formal Inspections $1,861,821 $206,882 $136,362 $946,382 $13,212 71.63:1

Reuse
30% Reuse$1,906,421 $153,683 $101,297 $954,980 $199,713 4.78:1
60% Reuse$1,348,702 $100,485 $66,233 $1,565,897 $399,426 3.92:1
90% Reuse $815,197 $47,287 $31,168 $2,152,600 $599,139 3.59:1

Cleanroom $447,175 $39,537 $19,480 $2,528,372 $77,361 32.68:1

Full Software Process Improvement$670,949 $22,429 $2,344,135 $313,358 7.48:1

Table 4.18: Comparison of SPI Methods



96

5. Summary and Conclusions

Having previously analyzed the primary benefits of software process in the previous 

version of this report, and having now analyzed in this report the secondary benefits of SPI from 

a profit and loss perspective, improvement methods can now be compared and extensively 

analyzed for purposes of presentation to senior management utilizing a metrics framework.  The 

results of the analysis for an example organization with example projects are summarized in 

Table 5.1.  The graphical representation of the Weighted Risk Likelihood is shown in Figure 5.1.

Table 5.1: Comparing All the Metrics of Process Improvement

Figure 5.1 - Comparison of Weighted Risk Likelihood

Metric Without Improvement With SPI Improvement
Primary Benefits
Tota l Development Costs $2,886,543 $780,174 $2,106,370
Tota l Rework Costs $619,369 $26,080 $593,288
Average Sc hedule Length 27 Ca lendar Months 17 Ca lendar Months 10 Months
Post Release Defec ts 15% of Tota l Defec ts <5% of Tota l Defec ts 80%
Secondary Benefits
Projec ted  Sa les $10,000,000 $10,500,000 $500,000
Pena lties/ Bonuses ($50,000) $50,000 $100,000
Yea rly Turnover Costs $615,000 $102,500 $512,500
Rep ea t Business $1,000,000 $5,000,000 $4,000,000
Cost of the Improvement $373,000 ($373,000)
Weighted  Risk Likelihood

High $412,500 $0
Med ium $1,678,125 $0

Low $0 $175,000

Risks - With/Without Improvement

$0

$200,000

$400,000

$600,000

$800,000

$1,000,000

$1,200,000

$1,400,000

$1,600,000

$1,800,000

Without Improvement With SPI

High

Medium

Low



97

5.1 The Financial Benefits of Software Process Improvement

Section 4 of this paper provides two different perspectives of the financial benefits of 

SPI: that of Jones (2000) as described in Section 4.1, where a complete high level model of the 

cost and savings impact can be developed, and that of the specific process improvements of 

Sections 4.2 through 4.4.  It is clear from the data presented in Section 4 that SPI can have a 

significant bottom line cost savings to a software development organization (as much as a 67% 

reduction in development and rework costs). 

Section 4 shows that SPI significantly:

• Reduces the amount of time and effort required to develop software 

• Reduces the number of defects induced into a system

• Reduces the costs and time to find defects that are introduced

• Reduces maintenance costs on software products

• Improves productivity of the development team

Additional analysis has been performed to observe the impact on this model for various 

program sizes (lines of code). Figure 5.2 shows the estimate of rework costs for different process 

models as a function of program size. Cost savings are proportional to program size and are 

shown as a percentage of traditional methods in the legend.  Similarly, Figure 5.3 compares 

development costs of traditional projects with other process models.  Cost savings were found to 

be proportional to program size.  Figure 5.4 shows the impact on schedule of various process 

models.  Again schedule improvements were found to be proportional to program size.



98

Rework Costs

$0

$200,000

$400,000

$600,000

$800,000

$1,000,000

$1,200,000

$1,400,000

$1,600,000

10,000  LOC 30,000  LOC 60,000  LOC 90,000  LOC 120,000

LOC

Traditional (100%)

Inspections (39%)

30% Reuse(29%)

60% Reuse(19%)

90% Reuse (9%)

Cleanroom (7%)

Full SPI (4%)

Figure 5.2: Rework as a Function of Program Size

Development Costs

$0

$1,000,000

$2,000,000

$3,000,000

$4,000,000

$5,000,000

$6,000,000

$7,000,000

$8,000,000

$9,000,000

10,000  LOC 30,000  LOC 60,000  LOC 90,000  LOC 120,000

LOC

Traditional (100%)

30% Reuse(77%)

60% Reuse(54%)

90% Reuse (33%)

Cleanroom (18%)

Inspections (75%)

Full SPI (37%)

Figure 5.3: Development Costs as a Function of Program Size



99

Figure 5.4: Schedule Length as a Function of Size

5.2 The Secondary Benefits of Software Process Improvement

This report has developed a financial model for assessing secondary benefits of software process 

improvement.  Software process improvement impacts the following areas:

 Projected Sales Without Improvement and Projected Sales With Improvement.  This factor 

would be used primarily in organizations developing commercial products and measures the increase 

in product sales given that products will be able to be shipped earlier.  The supporting data required 

to estimate this may not be readily available from sales.  If data is available, these metrics would 

provide a very meaningful measure for comparison.

 Average Historical Penalties/Bonuses and Average Projected Bonus.  These metrics are only of 

high payoff if the contract work being performed by an organization is of the type where bonuses and 

award fees are rewarded for high performance and on-time delivery or where penalties are incurred 

for poor performance.

 Yearly Turnover Costs Without Improvement and Yearly Turnover Costs With Improvement. 

Since process improvement improves employee morale, turnover should dramatically.  Turnover 

costs should be reduced accordingly.  The savings from less turnover could pay for the proposed 

improvements alone.

Schedule Length

0 Calendar Months

5 Calendar Months

10 Calendar Months

15 Calendar Months

20 Calendar Months

25 Calendar Months

30 Calendar Months

35 Calendar Months

40 Calendar Months

45 Calendar Months

10,000  LOC 30,000  LOC 60,000  LOC 90,000  LOC 120,000

Traditional (100%)

30% Reuse(91%)

60% Reuse(81%)

90% Reuse (68%)

Cleanroom (55%)

Inspections (92%)

Full SPI (63%)



100

 Development Costs With Key Employees, Development Costs Without Key Employees, 

Schedule Length With Key Employees, Schedule Length Without Key Employees.  Further 

complicating the costs of turnover is the impact of the possibility of losing some of the key technical 

employees of an organization.  The impact on an individual project could be significant.

 Repeat Business Without Improvement and Repeat Business With Improvement.  Improving 

customer satisfaction should result in repeat business.  However, until some experience with 

developing products using modern methods is achieved, it is very difficult to estimate these metrics. 

 Weighted Risk Likelihood Without Improvement and Weighted Risk Likelihood With 

Improvement.  These two metrics are the most interesting and potentially most powerful metrics 

selected, because they summarize and assign a probability to all the factors that need to be 

considered before selecting one method over another.



101

6. Annotated Bibliography

Arisholm, Erik, Gallis, Hans, Sjoberg, Dag I. K., Dyba, Tore, "Evaluating Pair Programming 

with Respect to System Complexity and Programmer Expertise", IEEE Transactions on 

Software Engineering, Volume 33 No. 2, February 2007, pp. 65 - 85.

A total of 295 junior, intermediate, and senior professional Java consultants (99 individuals 

and 98 pairs) from 29 international consultancy companies in Norway, Sweden, and the UK 

were hired for one day to participate in a controlled experiment on pair programming. The 

subjects used professional Java tools to perform several change tasks on two alternativeJava 

systems with different degrees of complexity. The results of this experiment do not support 

the hypotheses that pair programming in general reduces the time required to solve the tasks 

correctly or increases the proportion of correct solutions. On the other hand, there is a 

significant 84 percent increase in effort to perform the tasks correctly. However, on the more

complex system, the pair programmers had a 48 percent increase in the proportion of correct 

solutions but no significant differences in the time taken to solve the tasks correctly. For the 

simpler system, there was a 20 percent decrease in time taken but no significant differences in

correctness. However, the moderating effect of system complexity depends on the 

programmer expertise of the subjects. The observed benefits of pair programming in terms of 

correctness on the complex system apply mainly to juniors, whereas the reductions in 

duration to perform the tasks correctly on the simple system apply mainly to intermediates 

and seniors. It is possible that the benefits of pair programming will exceed the results 

obtained in this experiment for larger, more complex tasks and if the pair programmers have 

a chance to work together over a longer period of time.

Baddoo, N., Hall, T., and Jagielska, D., “Software developer Motivation in a High Maturity 

Company: A Case Study”, Software Process Improvement and Practice, Volume 11, No. 3 

(May-June 2006), pp. 219-228.

Motivation has been reported to be an important determinant of productivity and quality of 

work in many industries.  This article explores how motivation affects development work in 

software engineering.  Based on the experiences of an organization rated at CMM Level 5, 

developers who work in a high maturity organization are highly motivated.   

Baheti, P., Gehringer, E., and  Stotts, D., "Exploring the Efficacy of Distributed Pair 

Programming", Proceedings of XP/Agile Universe 2002, 2002, pp. 208 - 220.



102

Pair programming is one of the twelve practices of Extreme Programming (XP). Pair 

programming is usually performed by programmers who are collocated—working in front of 

the same monitor. But the inevitability of distributed development of software gives rise to 

important questions: How effective is pair programming if the pairs are not physically next 

to each other? What if the programmers are geographically distributed? An experiment was 

conducted at North Carolina State University to compare different working arrangements of 

student teams developing object oriented software. Teams were both collocated and in 

distributed environments; some teams practiced pair programming while others did not. In 

particular, we compared the software developed by virtual teams using distributed pair 

programming against collocated teams using pair programming and against virtual teams that 

did not employ distributed pair programming. The results of the experiment indicate that it is 

feasible to develop software using distributed pair programming, and that the resulting 

software is comparable to software developed in collocated or virtual teams (without pair 

programming) in terms of productivity and quality.

Basili, V., McGarry, F., Page, G., Pajerski, R., Waligora, S., Zelkowitz, M., “Software Process 

Improvement in the NASA Software Engineering Laboratory,” Technical Report CMU/SEI-

94-TR-22, Pittsburgh, Pennsylvania: Software Engineering Institute, Carnegie Mellon 

University, December 1994.

In this report the authors describe the software process improvement work at the NASA 

Software Engineering Laboratory (SEL), for which the SEL was awarded the first IEEE 

Computer Society Process Achievement Award.

This report describes the structure of the SEL, the SEL process improvement approach, and 

the experimentation and data collection process. Results of some process improvement 

studies are included, including the results of analyses of the Cleanroom approach and 

development in Ada versus Fortran.

The SEL uses the CMM model for assessing process and for selecting potential process 

changes. The SEL’s three phase approach for analyzing potential process improvements is to 

understand the current state, measure the impact of improvements on products generated, and 

package successful improvements.



103

This paper is of interest here because it provides statistics of effort distribution by life cycle 

phase and by activity. It also provides Cleanroom productivity and quality information, and 

describes the benefits achieved from reuse.

Bockle, G., Clements, P., McGregor, J., Muthig, D., and Schmid, K., “Calculating ROI For 

Software product Lines”, IEEE Software, Volume 21, Issue 3 (May-June 2004), pp. 23-31.

      Product line engineering has become an important and widely used approach for efficiently 

developing portfolios of software products. The idea is to develop a set of products as a 

single, coherent development task from a core asset base (sometimes called a platform), a 

collection of artifacts specifically designed for use across a portfolio. This approach produces 

order-of-magnitude economic improvements compared to one-at-a-time software system 

development. Because the product line approach isn't limited to specific technical properties 

of the planned software but rather focuses on economic characteristics, high return on 

investment has become the anthem of the approach's protagonists. The software product line 

cost model can calculate the costs and benefits (and hence the ROI) that can be expected to 

accrue from various product line development situations. It's also straightforward and 

intuitive.

Boehm, B., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.

This book is truly a classic in the area of software estimating.  It describes the Constructive 

Cost Model (COCOMO), a non-proprietary model for estimating development and 

maintenance costs for software.  The book is also an excellent resource for software 

management and software engineering topics in general.  Especially noteworthy is his 

discussion of human versus material economics; the estimates from cost models such as 

COCOMO must be assessed in light of the impact they have on people, the environment,  and 

other non-material issues.

Boehm, B., “Improving Software Productivity,” Computer, Vol. 20, No. 9, September 1987, 

pp.43-57.

The article discusses avenues of improving productivity for both custom and mass produced 

software. It covers national, international and organizational trends; some of the pitfalls in 

defining software productivity; identifying factors that influence productivity (software value 

change and software productivity opportunity tree); productivity improvement steps; software 

productivity trends and conclusions.



104

This article provides interesting statistics about the cost impact of a mediocre team versus a 

very good team on a development project, the impact of facilities on productivity and the cost 

impact by phase of reuse.

Boehm, B., et al, Software Cost Estimation with COCOMO II, Prentice-Hall, Upper saddle 

River, NJ, 2000.

      COCOMO II is a model to help the reader reason about the cost and schedule implications of 

software decisions that need to be made. This book and model address issues related to (1) 

evolutionary, risk driven and collaborative software processes; (2) fourth-generation 

languages and application generators; (3) commercial off-the-shelf (COTS) and reuse-driven 

software approaches; (4) fast-track software development approaches; and (5) software 

process maturity initiatives.  

Boehm, B., “Get ready for Agile Methods – With Care”, IEEE Computer, January, 2002, pp. 64-

69.

     Although many of their advocates consider the agile and plan-driven software development 

methods polar opposites, synthesizing the two can provide developers with a comprehensive 

spectrum of tools and options. Real-world examples argue for and against agile methods. 

Responding to change has been cited as the critical technical success factor in the Internet 

browser battle between Microsoft and Netscape. But over-responding to change has been 

cited as the source of many software disasters, such as the $3 billion overrun of the US 

Federal Aviation Administration's Advanced Automation System for national air traffic 

control. The author believes that both agile and plan-driven approaches have a responsible 

center and over-interpreting radical fringes. Agile and plan-driven methods both form part of 

the planning spectrum. Thus, while each approach has a home ground within which it 

performs very well, and much better than the other, a combined approach is feasible and 

preferable in some circumstances;

Boehm, B., and Turner, R., Balancing Agility and Discipline: A Guide for the Perplexed, 

Addison Wesley, Boston, MA, 2004.

This book shows how seemingly opposite concepts of agility and discipline can and should 

be complementary.  The authors illustrate the similarities and differences between agile and 

plan-driven methods, and show development strategies that combine the best of both 



105

methods.  They show how to find the “sweet spot” on the agility-discipline continuum for any 

given project.

Boehm, B., Brown, A., Madachy, R., and Yang, Y., “A Software Product Line Life Cycle Cost 

Estimation Model”, Proceedings 2004 International Symposium on Empirical Software 

Engineering, 19-20 August 2004, pp. 156-164 (USC-CSE-2004-517).

Most software product line cost estimation models are calibrated only to local product line 

data rather than to a broad range of product lines. They also underestimate the return on 

investment for product lines by focusing only on development vs. life-cycle savings, and by 

applying writing-for-reuse surcharges to the entire product rather that to the portions of the 

product being reused. This paper offers some insights based on the exploratory development 

and collaborative refinement of a software product line life cycle economics model, the 

Constructive Product Line Investment Model (COPLIMO) that addresses these shortfalls.

COPLIMO consists of two components: a product line development cost model and an 

annualized post-development life cycle extension. It focuses on modeling the portions of the 

software that involve product-specific newly-built software, fully reused black-box product 

line components, and product line components that are reused with adaptation. This model is 

an extension built upon USC-CSE's well-calibrated, multi-parameter Constructive Cost 

Model (COCOMO) II, tailored down to cover the essentials of strategic software product line 

decision issues and available supporting data from industries.

Boehm, B., Huang, L., Jain, A., and Madachy, R., “The ROI of Software dependability: The 

iDAVE Model”, IEEE Software, Volume 21, Issue 3 (May/June 2004), pp. 54-61.

In most organizations, proposed investments in software dependability compete for limited 

resources with proposed investments in software and system functionality, response time, 

adaptability, speed of development, ease of use, and other system capabilities. The lack of 

good return-on-investment models for software dependability makes determining the overall 

business case for dependability investments difficult. So, with a weak business case, 

investments in software dependability and the resulting system dependability are frequently 

inadequate. Dependability models will need to support stakeholders in determining their 

desired levels for each dependability attribute and estimating the cost, value, and ROI for 

achieving those. At the University of Southern California, researchers have developed 

software cost- and quality-estimation models and value-based software engineering 



106

processes, methods, and tools. We used these models and the value-based approach to 

develop an Information Dependability Attribute Value Estimation model (iDAVE) for 

reasoning about software dependability's ROI.

Bowers, Pamela, "The F/A-18 Advanced Weapons Lab Successfully Delivers a $120-Million 

Software Block Upgrade", Crosstalk, Volume 15 No. 1, January 2002, pp. 10 - 11.

As the F/A-18 Hornet becomes the Navy's nearly exclusive strike fighter, the Advanced 

Weapons Laboratory (AWL) steps up to the task of delivering a major software block 

upgrade. The software, called the 15C System Configuration Set (SCS), provides 

advancements that upgrade the interface between the aircraft mission systems and the 

aircrew. The AWL successfully delivered "real time" processing in an extremely mission 

critical system that pushes the technology envelope, and that requires absolute safety of 

flight.

Brodman, J. G., Johnson, D. L., “Return on Investment (ROI) from Software Process 

Improvement Measured by US Industry,” Software Process--Improvement and Practice, July 

1995, pp. 35-47.

This paper summarizes the results of research funded under an SBIR Phase I project to 

determine costs and savings resulting from CMM-based software process improvement. The 

authors interviewed government and industry representatives and reviewed textbooks to 

determine a common definition for Return on Investment (ROI). Each source had a radically 

different perspective on ROI. The authors identified, graphically, the various categories 

industry representatives used to measure investment and returns.

The paper identifies several useful numerical findings about organizations involved in CMM-

based SPI, including the amount of time spent at each SEI level, the use of various cost 

models and various costs associated with process improvement (e.g. cost of data collection, 

cost of fixing code defects). ROI and cost savings figures are given for SPI programs at 

Raytheon, Hughes and Tinker AFB.

Some of the more interesting findings are non-measurable benefits from a SPI program: 

improved morale of developers, increased respect for software from organizations external to 

software and less overtime, to name a few. In general many companies look at SPI, not from 



107

a specific ROI financial perspective, but rather from the perspective of being more 

competitive, customer satisfaction and repeat business.

Brynjolfsson, E., "The Productivity Paradox of Information Technology," Communications of the 

ACM, Volume 36 #12 (December 1993), pp. 67-77.

This article examines why there is such a shortfall of evidence about productivity increases 

from Information Technology.  Whereas productivity for the production sector has increased, 

the service sector has decreased with investments in Information Technology.  He addresses 

in this article four possible explanations for this phenomenon: mismeasurement of outputs 

and inputs; lags due to learning and adjustment; redistribution and dissipation of profits 

where IT may only benefit certain areas - IT rearranges the shares without making it any 

bigger; mismanagement of information and technology.  The author believes the major 

problem is due to mis-measurement.  Relative to my paper, it shows the difficulty in 

measuring productivity.

The author suggests that productivity is the fundamental economic measure of a technology's 

contribution. Economists are puzzled by the productivity slowdown that began in the early 

70s - there is an unplanned residual drop in productivity compared with the first half of the 

postwar period.  This drop coincided with a rapid increase in use of IT, implying that IT 

investments may have been counterproductive.  In that period output per production worker 

increased by 16.9%, whereas output per information worker decreased by 6.6% -

concentrated in white collar worker and the most heavily endowed with high tech capital.

Burke, G., and Howard, W., “Knowledge Management and Process Improvement: A Union of 

Two Disciplines”, Crosstalk, Volume 18 #6 (June, 2005), On-line article.

The experience at the Federal Aviation Administration (FAA) shows that process 

improvement and knowledge management complement each other well. Process 

improvement helps the organization increase its effectiveness through continuous 

examination with a view to doing things better. Once processes are documented, roles and 

responsibilities are readily identified and associated activities are performed. Legacy 

processes are modified to reflect organizational changes. Knowledge management facilitates 

communication among organizations, increasing information sharing and utilizing process 

documentation. This information sharing promotes organizational unity and allows FAA 

headquarters and regional operations to function efficiently.



108

Card, D., Comer, E., “Why Do So Many Reuse Programs Fail?” IEEE Software, September 

1994, pp. 114-115.

This short article discusses the reasons the authors believe some reuse programs have failed. 

They attempt to explain why some organizations are able to achieve 30-80% reuse, whereas 

others have failed. They believe that failed organizations treat reuse as a technology 

acquisition problem instead of a technology transition problem, and organizations fail to 

approach reuse as a business strategy. The authors believe the most important obstacles are 

economic and cultural.

Carney, D.J., Oberndorf, P.A., "The Commandments of COTS: Still in Search of the Promised 

Land," Crosstalk, Volume 10 #5 (May 1997), pp. 25-30.

This is a very good article that discusses the benefits and liabilities of using commercial off 

the shelf software as well as the causes and effects of the DoD mandates for increased usage 

of COTS products.  Many current RFPs now include a mandate concerning the amount of 

COTS products that must be included.  Hidden costs, such as understanding COTS products 

as system components; market research to find COTS products; product analyses to select 

among alternatives; licenses and warranties; product integration; revisions; coordination of 

support vendors; recovery when a vendor discontinues a product or goes out of business are 

discussed in detail.  The ten commandments identified within the article include:

1. Do not believe in silver bullets.

2. Use the term precisely.

3. Understand the impact of COTS products on the requirements and selection 

process.

4.  Understand COTS impact on the integration process.

5. Understand COTS impact on the testing process.

6. Realize that a COTS approach makes a system dependent on the COTS 

vendors.

7. Realize that maintenance is not free.

8. You are not absolved of the need to engineer the system well.

9. Just "doing COTS" is not an automatic cost saver.



109

10. Just "doing COTS" must be part of a large-scale paradigm shift.

Carney, D., Morris, E., and Place, P., Identifying Commercial Off-the-Shelf (COTS) Product 

Risks: The COTS UsageRisk Evaluation, Software Engineering Institute, Carnegie Mellon 

University, Pittsburgh, PA, September, 2003 (CMU/SEI-2003-TR-023).

The expansion in use of commercial off-the-shelf (COTS) products has been accompanied by 

an increase in program failures. Many of these failures have been due to a lack of familiarity 

with the changed approach that COTS products demand. This report describes the 

development of an approach to reduce the number of program failures attributable to COTS 

software: the COTS Usage Risk Evaluation (CURE). The origin of CURE and an overview 

of the method, along with detail on the materials and mechanisms used in CURE, are 

provided. The CURE process is outlined and the results of the evaluations that have been 

conducted are summarized. Finally, possible future directions for CURE are explored.

Ceschi, M., Sillitti, A., Succi, G., and De Panfilis, S., “Project Management in Plan-Based and 

Agile-Based Companies” IEEE Software, Volume 22, Issue 3 (May/June 2005), pp. 21-27.

Agile methods are a recent set of development techniques that apply a human-centered 

approach to software production. The agile approach aims to deliver high-quality products 

faster, producing satisfied customers. We conducted an empirical study to investigate 

whether agile methods change and improve project management practices in software 

companies. Survey results show that adopting agile methods appears to improve management 

of the development process and customer relationships. This article has given a first analysis 

of the advantages and disadvantages of adopting agile methods from a project management 

perspective.

Ciolkowski, M. and Schlemmer, M., "Studying the Effect of Pair Programming", Proceedings of 

ISERN 2002, October 2002.

      This paper describes a case study using a realistic task within a practical course at the 

University of Kaiserslautern, Germany, conducted in teams of six students and comprising 

about 700 person-hours of total effort.  Within the case study setting, weak support was found 

for results obtained from earlier studies.  The paper describes experiences made in 

conducting the case study and suggests improvements for further investigations.   



110

CMMI Product Team, CMMI For Development, Version 1.2, Software Engineering Institute, 

Carnegie Mellon University, Pittsburgh, PA, 2006 (CMU/SEI-TR-2006-008).

This document, which contains more than 500 pages, is the definitive work on the CMMI.  It 

contains a wealth of information on use of the CMMI, capability and maturity levels, and, 

especially, the generic goals and process areas to reach higher levels of capability or maturity.  

It is the source document which should be referenced by anyone using or writing articles 

about the CMMI.

Clements, P., and Northrop, L., Software Product Lines: Practices and Patterns, Addison 

Wesley, Boston, MA, 2002.

      This book is the distillation of all that the authors have learned about software product lines. 

They describe the essential activities, which are (1) the development of a set of core assets 

from which all of the products will be built, (2) the development of products using those core 

assets, and (3) strong technical and organizational management to launch and coordinate both 

core asset development and product development.

Cockburn, A., and Williams, L., “The Costs and Benefits of Pair Programming”, University of 

Utah Technical Report, 1999.

Using interviews and controlled experiments, the authors investigated the costs and benefits 

of pair programming.  They found that for a development time-cost increase of 15%, pair 

programming improves design quality, reduces defects, enhances technical skills, improves 

communications, and is more enjoyable at statistically significant levels.

Curtis, W., “Building a Cost-Benefit Case for Software Process Improvement,” Notes from 

Tutorial given at the Seventh Software Engineering Process Group Conference, Boston, MA, 

May 1995.

In this tutorial the author presents methods for determining cost-benefits from software 

process improvement and discusses some of the published cost benefits results. He points out 

that differences across organizations make direct comparison of improvement results hard --

different markets and application areas, different business climate, and different past 

decisions affecting performance. A controlled, scientific study is impossible. Immature 

organizations rarely have the data to support good cost-benefit analyses. He concludes 

however that Process Improvement works: cost benefits of 6:1, 2X to 3X productivity 

improvement, 100X reduction in delivered defects.



111

The author points out that with increasing maturity the accuracy of cost and schedule 

estimates increase, with reduced variance in target date, and cost prediction improves.  As 

organizations approach level 2, project level results represent the impact of a cluster of 

process changes. The first benefit is usually the ability to meet schedule.

“DACS Data Collection Surveys", DACS, July 2003.

In Issue 6-1 of the DoD Software Technical News, The DACS included an SPI Data 

Collection Survey so organizations could report the benefits from using SPI.  The surveys 

included 12 attributes of product improvement, including defect reduction, productivity, and 

ROI.  Two agencies responded: Goldman, Sachs, and Company of New York City, and HQ 

USAF in Washington, DC.  Both organizations reported positive benefits in all areas 

applicable to their organizations.

Davis, N., and Mullaney, J., The Team Software Process (TSP) in Practice: A Summary of recent 

Results, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2003

(CMU/SEI-2003-TR-014).

This report provides results and implementation data from projects and individuals that have 

adopted the TSP.  The results show that TSP teams can deliver essentially defect-free 

software on schedule while at the same time improving productivity.  The report also 

illustrates adoption experiences of practitioners in the field, including TSP team members, 

their managers, and their coaches and instructors.

Diaz, M., Sligo, J., "How Software Process Improvement Helped Motorola," IEEE Software, 

Volume 14 #5 (September/October 1997), pp. 75-81.

This article demonstrates the data and metrics of the results of Motorola's CMM usage going 

from level 1 through level 5 (self assessments).  Of particular note is the recognition by the 

authors that the most significant cost benefit occurs when projects finish early, allowing the 

company to apply more resources to the acquisition and development of new business. 

Productivity is directly related to our ability to win new programs in DoD and drives 

profitability in emerging commercial products.

Some observations of particular note include: They use Quality, Cycle Time & Productivity 

to evaluate their programs because this is what customers value.  Each level increase of the 

CMM improves quality by 2X.  Higher maturity projects have a better schedule performance 

index, however a decrease in cycle time between level 2 and 3 was surprising, but author 



112

indicates the decrease from 2 to 3 may indicate a weak correlation between schedule 

performance and maturity that has been shown in other surveys.  Defect injection rate is 

roughly 1/2 for each level, thus level 2 rework = 8X level 5 project.  Productivity improves 

with increasing maturity level, but a decrease in productivity between level 2 and 3 appears to 

be a side effect of asking people to do too many things differently at level 3.  They estimate a 

677% ROI from their improvement efforts.

Diaz,M., King, J., “How CMM Impacts Quality, Productivity, Rework, and the Bottom Line”, 

Crosstalk, Volume 15 #3 (March 2002), pp. 9-14.

This article explores various cost/benefit issues and examines performance results of various 

General Dynamics Decision Systems projects with relation to software process maturity.  The 

quantitative data presented indicates CMM-based SPI yields dividends in terms of both 

higher productivity and higher software quality.  Each level of improvement significantly cuts 

defect density, improves productivity, and reduces rework.

Dion, R., “Process Improvement and the Corporate Balance Sheet,” IEEE Software, July 1993, 

pp. 28-35.

This paper summarizes the financial and non-financial impacts of Raytheon's Software

Systems Laboratory (SSL) process improvement program, the Software Engineering 

Initiative, on Raytheon's balance sheet between 1988 and 1992. The author estimates that 

Raytheon's process improvement program resulted in a 7.7:1 return on investment, a two-fold 

increase in productivity and an SEI CMM rating increase from level 1 (Initial) to level 3 

(Defined).

Raytheon's improvement program focused on policy and procedures, training, tools and 

methods, and a process database. Their process improvement paradigm involves a 3-phase 

process-stabilization, process-control and process-change process. Raytheon was surprised to 

see that benefits from this paradigm were observed during the first two phases, whereas they 

expected a full cycle would be necessary before an impact could be seen.

The author's analysis focuses on savings from less rework because of better inspection 

procedures. He estimates that they eliminated $9.2 million in rework costs. The author also 

estimates that Raytheon achieved a 130% productivity increase over this same period. 

Improved competitive position, higher employee morale, and lower absenteeism and attrition 

were second order effects of the improvement program.



113

Doolan, E. P., “Experience with Fagan's Inspection Method,” Software Practice and Experience, 

Vol. 22(2), February 1992, pp. 173-182.

This paper describes the use of Fagan’s inspection techniques at Shell Research’s Seismic 

Software Support Group. They used this technique for verifying and validating requirements. 

The author reports that 50% of all enhancement requests dealt with requirements issues that 

should have been found during requirements analysis. The author then describes their 

analysis of the price of this non-conformance.

The author describes the Fagan inspection process and the payback achieved from their 

inspection process. He states that fixing software in released software can be as much as 80X 

as expensive as fixes during the specification stage. The estimated ROI is 30:1.

Dorofee, A. J., Walker, J. A., Williams, R. C., "Risk Management in Practice," Crosstalk, 

Volume 10 #4 (April 1997), pp. 8-12.

This article summarizes lessons learned by the SEI over the last seven years in application of 

its' risk management program. The SEI's functions of managing risks includes: identify, 

analyze, plan, track, control, and communicate.  Each organization involved in development 

is responsible to manage their own risks and everyone must work jointly to manage the risks 

to the program. The article also summarizes the common mistakes as well as transitioning 

and implementation advise of risk management.

Lessons learned include: (1) Written risks are harder to ignore than verbal concerns.  A risk 

information sheet can be used to document risks; (2) Quantitative analysis is not always 

necessary, and Quantitative Analysis is only needed for risks that require numerical 

justification or rationale for mitigation planning; (3) Group related risks; (4) Prioritize and 

sort risks - not all risks can be mitigated; (5) Metrics and Measures - track both the risk and 

the mitigation plan.  Spreadsheets that summarize all open risks are good for an overall view 

of the program's risks; and (6) Use databases to document risks, problems, schedules and 

change tracking, collect and analyze lessons learned.

Common mistakes include: (1) Risk management is not free.  Allocate a % of project budget 

for mitigation costs; (2) How many risks were closed this week is the wrong question.  Rather 

look at how many problems occurred that you did not foresee, then analyze why they were 

unforeseen; (3) Communication is important; and (4) don't just identify risks - do something 

with them.



114

Drobka, J., Noftz, D., Raghu, R., "Piloting XP on Four Mission-Critical Projects", IEEE 

Software, Volume 21 No. 6, November/December 2004, pp. 70 - 75.

      This article asserts that software development teams constantly battle to increase productivity 

while maintaining or improving quality.  It explains how four Motorola teams piloted 

Extreme Programming to see if it would let them satisfy their customers’ constantly changing 

requirements while improving productivity.

El Emam, K., The ROI From Software Quality, Auerbach Publications, Boca Raton, FL, 2005.

This book provides the tools needed for software engineers and project managers to calculate 

how much they should invest in quality, what benefits the investment will reap, and just how 

quickly those benefits will be realized. It provides quantitative models necessary for making 

real and reasonable calculations and shows how to perform ROI analysis before and after 

implementing a quality program. The contents are supported with large amounts of data and 

numerous case studies.

Ezran, M., Morisio, M., and Tully, C., Practical Software Reuse, Springer-Verlag, London, UK, 

2002.

This book seeks to emphasize the practice of reuse, and the practical issues that influence 

success or failure. It also seeks to offer a concise coverage of all the important aspects of 

reuse, focusing on the essentials of the subject rather than going into undue depth and detail 

on some topics at the expense of others.

Fagan, M. E., “Advances in Software Inspections,” IEEE Transactions on Software Engineering, 

Vol. SE-12, No. 7, July 1986, pp. 744-751.

This paper describes benefits achieved from a formal inspection process. Inspections are 

formal processes that are intended to find defects in software nearer the point of injection of 

the defect than testing does, using less resources for rework. This is achieved by inspecting 

the output product(s) of each operation in the development process to verify that it satisfies 

the exit criteria of the operation. Defects are defined as any deviation from the exit criteria. 

Inspections can be performed on any product (e.g. test plans, procedures, users manuals) to 

improve defect detection efficiency of any process that creates a product.

The author, a member of the IBM technical staff, claims that the inspection process finds 60-

90% of all defects and provides feedback to programmers that enables them to avoid 



115

injecting defects in future design and coding work. The author claims that inspection costs 

typically amount to 15% of project cost. The article includes a revealing graph that shows the 

“snail” shaped graph of development resources vs. time without inspections and overlays on 

top of the same graph with inspections. The graph shows that resource requirements are 

slightly greater during planning, requirements definition and design. However the payoff 

occurs during coding and test when it is much more expensive to fix defects introduced 

earlier. The graph also shows that the overall development schedule is greatly reduced with 

inspections.

Fenton, N., “How Effective Are Software Engineering Methods?,” Journal of Systems and 

Software, Vol. 22, Number 2, August 1993, pp. 141-146.

This article is a skeptical view of the statistics and ROI data reported in the literature. The 

author claims that there is a poor state of the art of empirical assessment data in software 

engineering because of inappropriate or inadequate use of measurement. The article examines 

the quantitative benefits that 25 years of R&D in software engineering have brought. The 

author shows that anecdotal “evidence” of significantly improved quality and productivity are 

not backed up by hard empirical evidence. And where hard data exists, it is counter to the 

view of the so-called experts.

The author states that many of the best projects do not have state of the art methodologies or 

extensive automation and tooling. Rather they rely on strong teamwork, project 

communication and project controls.  He believes that good management and organization is 

a more critical success factor than advanced technology.

Ferguson, P., Software Process Improvement Works! Advanced Information Services, Inc., 

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1999 

(CMU/SEI-99-TR-027).

Advanced Information Services (AIS) has seen considerable benefits from use of the 

Software Engineering Institute’s Capability Maturity Model (CMM) and Personal Software 

Process (PSP). AIS presents an overview of the organization software process improvement 

efforts and benefits in schedule, effort, quality, productivity, and employee satisfaction from 

use of CMM and PSP.



116

Ferguson, P., "Capability Maturity Model (CMM) + Personal Software Process (PSP) = Results", 

Software Engineering Process Group 2000, March 2000, Software Engineering Information 

Repository - Carnegie Mellon.

This presentation describes the results of using the CMM and PSP at Advanced Information 

Systems, Inc.  

Freed, D., “CMMI Level 5: Return on Investment for Raytheon N TX”, Fourth Annual CMMI 

Technical Conference and User Group, Denver, CO, November, 2004.

      This presentation describes activities at the Software Engineer division of StorageTek, a 

large company that designs, manufactures, sells, and maintains data storage hardware and 

software. The SPI effort goals were mapped to corporate quality, cost, and delivery goals. An 

interim goal of achieving Software Engineering Institute (SEI) Capability Maturity Model 

(CMM) Level 2 was set. Eventually, Capability Maturity Model â€“ Integrated key process 

areas were satisfied with a process combining and Agile Development. Organizational 

transformation techniques were applied to gain acceptance of the newly designed process. 

The presentation documents benefits in productivity gains and less schedule slippage. 

Freimut, B., Briand, L., and Vollei, F., “Determining Inspection Cost-Effectiveness by 

Combining project Data and Expert Opinion”, IEEE Transactions on Software Engineering, 

Vol. 31, No. 12 (December, 2005), pp. 1074-1092.

There is a general agreement among software engineering practitioners that software 

inspections are an important technique to achieve high software quality at a reasonable cost. 

However, there are many ways to perform such inspections and many factors that affect their 

cost-effectiveness. It is therefore important to be able to estimate this cost-effectiveness in 

order to monitor it, improve it, and convince developers and management that the technology 

and related investments are worth while. This work proposes a rigorous but practical way to 

do so. In particular, a meaningful model to measure cost-effectiveness is proposed and a 

method to determine cost-effectiveness by combining project data and expert opinion is 

described. To demonstrate the feasibility of the proposed approach, the results of a large-

scale industrial case study are presented and an initial validation is performed.

Galorath, D., “Software Reuse and Commercial Off-the-Shelf Software”, IT Metrics and 

Productivity Journal, August 28, 2007, pp. 1-22.



117

Organizations faced with the difficulties and costs associated with the development of 

software have turned to the reuse of existing software or using commercial off-the-shelf 

(COTS) software as an option. Reuse, whether involving home-grown or COTS components, 

certainly promises lower cost, better quality, a decrease in risk, and the potential for a less 

stressful development process. Many such efforts succeed, but the promises of decreased cost 

and risk are not always realized. Requirements, algorithms, functions, business rules, 

architecture, source code, test cases, input data, and scripts can all be reused.

Galin, D. and M. Avrahami (2005). “Do SQA Programs Work – CMM Works. A Meta 

Analysis”, Proceedings of the International Conference on Software – Science, Technology 

& Engineering (SwSTE’05) (Ed. by A. Tomer and S. R. Schach), Washington, DC, Computer 

Science Press: 95-100.

Many software development professionals and managers of software development 

organizations are not fully convinced in the profitability of investments for the advancement 

of software quality assurance (SQA) systems.  The results included in each of the articles 

cannot lead to general conclusions on the impact of investments in upgrading an SQA 

system. The meta analysis was based on CMM level transition (CMMLT) analysis of 

available publications and was for the seven most common performance metric. The 

CMMLT analysis is applicable for combined analysis of empirical data from many sources. 

Each record in the meta analysis database is calculated as “after-before ratio”, which is nearly 

free of the studied organization’s characteristics. Because the CMM guidelines and SQA 

requirement are similar, it is claimed that the results for CMM programs are also applicable 

to investments in SQA systems The extensive database of over 1,800 projects from a variety 

of 19 information sources leading to the meta analysis results – proved that investments in 

CMM programs and similarly in SQA systems contribute to software development 

performance.

Gibson, D., Goldenson, D., and Kost, K., Performance Results of CMMI-Based Process 

Improvement, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 

2006 (CMU/SEI-TR-2006-004).

This SEI technical report summarizes much of the publicly available empirical evidence 

about the performance results that can occur as a result of of CMMI-based process 

improvement.  The report contains a series of 10 brief case descriptions that were created in 



118

collaboration from representatives of several organizations that have realized notable 

quantitative performance results through their CMMI-based process improvement efforts. 

Goldenson, D., and Gibson, D., Demonstrating the Impact and Benefits of CMMI: An Update 

and Preliminary Results, Software Engineering Institute, Carnegie Mellon University, 

Pittsburgh, PA, 2006 (CMU/SEI-2003-SR-009).

There is a widespread demand for evidence about the impact and benefits of process 

improvement based on Capability Maturity ModelÂ® Integration (CMMIÂ®) models. Much 

has been documented about the practice of CMMÂ®-based process improvement and its 

value for the development and maintenance of software and software-intensive systems; 

however, the existing information is sometimes outdated and there are increasing calls for 

evidence directly based on CMMI experience. This special report presents selected results 

from 12 case studies drawn from 11 organizations. While still limited, the case studies 

provide credible evidence that CMMI-based process improvement can help organizations 

achieve better project performance and produce higher quality products. The report also 

describes plans for gathering further evidence from organizations using CMMI models.

Goyal, A., Kanungo, S., Muthu, V., Jayadevan, S., "ROI for SPI: Lessons from Initiatives at IBM 

Global Services India", Third Software Engineering Process Group in Asia Conference, 

January 2001.

One of the most critical outcomes of software process improvement (SPI) efforts is the 

realization of return on investment (ROI). However, the notion of ROI, in the context of SPI, 

is associated with two problem areas. One has to do with conceptualizing and defining what 

can be loosely referred to as cost and benefits. The other problem is to come up with an 

integrative framework to understand how seemingly disjointed costs and benefits relate to 

each other. While these two sets of problems present from a methodological standpoint â€“ 

and, as a consequence, lend themselves to methodological resolutions, we posit a stance that 

goes beyond numbers. In doing so, we are suggesting a conceptualization of ROI that derives 

from shared mental models whereby SPI techniques become deeply ingrained into individuals 

belief systems. In that context, the question does not remain “”what is ROI”?  The question 

of relevance evolves into “Can we address the appropriateness of ROI”? In essence we have 

written this paper because, in general, individuals have difficulty in (or problems with) 

figuring out how to calculate ROI using simple information and their management is always 



119

concerned about this question. This paper addresses three things: (i) ways to calculate ROI, 

(ii) middle managers’ buy in, and (iii) overall conceptualization of ROI in SPI.

Harrison, W., Raffo, D., Settle, J., and Eickelmann, N., “Technology Review: Adapting Financial 

Measures: Making a Business Case for Software Process Improvement”, Software Quality 

Journal, V. 8, N. 3 (Nov 1999): 211-231.

Software firms invest in process improvements in order to benefit from decreased costs 

and/or increased productivity sometime in the future. Such efforts are seldom cheap, and they 

typically require making a business case in order to obtain funding. The authors review some 

of the main techniques from financial theory for evaluating the risk and returns associated 

with proposed investments and apply them to process improvement programs for software 

development. The authors also discuss significant theoretical considerations as well as 

robustness and correctness issues associated with applying each of the techniques to software

development and process improvement activities. Finally the authors introduce a present

value technique that incorporates both risk and return that has many applications to software 

development activities and is recommended for use in a software process improvement 

context.

Harter, D., Krishnan, M., and Slaughter, S., "Effects of Process Maturity on Quality, Cycle Time, 

and Effort in Software Product Development", Management Science, April 2000, pp. 451 -

466.

This paper investigates the relationship between process maturity, quality, cycle time, and 

effort for the development of thirty software projects by a major information technology (IT) 

firm.  Higher levels of process maturity as assessed by the Software Engineering Institute’s 

Capability Maturity Model are associated with higher product quality, but also with increases 

in cycle time and development effort.  However, the findings indicate that the reductions in 

cycle time and effort due to improved quality outweigh the increases from achieving higher 

levels of process maturity.  Therefore, the net effect of process maturity is reduced cycle time 

and development effort.

Hausler, P. A., Linger, R. C., Trammell, C. J., “Adopting Cleanroom Software Engineering With 

A Phased Approach,” IBM Systems Journal, Vol. 33, No. 1, 1994, pp. 89-109.

This paper describes key Cleanroom technologies and summarizes quality results achieved by 

Cleanroom teams. It also describes a three phase approach to Cleanroom implementation 



120

based on the software maturity level of an organization and summarizes the results of a large 

IBM Cleanroom project that successfully applied a phased approach.

Cleanroom software engineering is a managerial and technical process for the development of 

software approaching zero defects with certified reliability. It provides a complete discipline 

within which software teams can plan, specify, design, verify, code, test and certify software. 

In this approach, the more powerful process of team correctness verification replaces unit 

testing and debugging, and software enters system testing with no execution by development 

teams. All errors are accounted for from the first execution, with no private unit testing 

permitted. Certification test teams are not responsible for testing-in quality, but rather for 

certifying the quality of software with respect to its specification. Cleanroom software 

typically enters system test approaching zero defects.  Successive increments elaborate the 

top down design of increments already in execution.

Hayes, W. (1999). “Research Synthesis in Software Engineering: A Case for Meta-Analysis”, 

Proceedings of the Sixth International Software Metrics Symposium: 143-151.

      The use of meta-analytic techniques to summarize empirical software engineering research 

results is illustrated using a set of 5 published experiments from the literature. The intent of 

the analysis is to guide future work in this area through objective summarization of the

literature to date. A focus on effect magnitude, in addition to statistical significance is 

championed, and the reader is provided with an illustration of simple methods for computing 

effect magnitudes.

Hayes, W., Zubrow, D., “Moving On Up: Data and Experience Doing CMM-Based Software 

Process Improvement,” Presentation at the Seventh Software Engineering Process Group 

Conference, Boston, MA, May 23, 1995.

In this presentation, the authors provide information about organizations that have gone 

through reassessments, the growth of reassessments spanning 1987-1994, the types of 

organizations that have had reassessments and the relative maturity profile of these 

organizations.

The presenters conclude that to move from Level 1 CMM to Level 2 requires, on average, 30 

months, and from Level 2 to Level 3, on average, 25 months. They identify issues that most 

clearly distinguish Level 2 organizations from Level 1 organizations.



121

Henry, D., McCarthy, L., and Chitnis, S., "CMMI Transition at Motorola GSG", CMMI 

Technology Conference, Denver, CO, Nov 2003.

This presentation describes the improvements made at the Motorola Global Software Group 

(GSG) India location from 2001 to 2003 as they attained CMMI Level 5.  The organization 

met most of its improvement goals in areas such as customer satisfaction, cycle time 

reduction, post release defects, and productivity.  The presentation also describes current 

efforts at the GSG Canada location to improve process maturity.

Herbsleb, J., Zubrow, D., Siegel, J., Rozum, J., Carleton, A., “Software Process Improvement: 

State of the Payoff,” American Programmer, Vol. 7 no. 9, September 1994, pp. 2-12.

This paper provides statistical results as reported by 13 organizations (companies, DoD 

organizations) to show what benefit or value can be gained by organizations involved in 

serious CMM-based software process improvement (SPI). The article then points out that 

beyond the basic Return on Investment (ROI) numbers, we need to understand those factors 

in the SPI process that increase successes and those that result in a failure.

Results reported include costs/software engineer/year for SPI, percentage gain/year in 

productivity (lines of code/year), percentage reduction/year in calendar time to develop 

software, percentage reduction/year in post-release defects and ROI for SPI efforts.

Definitions of note: ROI - ratio of measured benefits to measured costs. Measured benefits

typically include savings from productivity gains and fewer defects. Measured costs of SPI 

generally include the costs of the Software Engineering Process Group (SEPG), assessments 

and training. Measured costs do not include staff time to put new processes in place.

Hodgetts, P., and Phillips, D., "Extreme Adoption Experiences of a B2B Start-up", Extreme 

Programming Perspectives, 2003, Addison-Wesley, pp. 355 - 362.

This book chapter presents the results of adopting XP at an Internet business-to-business 

(B2B) start-up. The writers discuss their motivations and goals for adopting XP and the 

context under which the adoption efforts were evaluated. Then they present the results in

terms of objective metrics and subjective evaluations. The results indicate that the project 

conducted under XP demonstrated significant improvements.

Hoffman, Gabriel, "Integrating PSP and CMMI Level 5, Northrop Grumman", 3rd Annual 

CMMI Technology Conference and User Group, May, 1 2003, pp. 26 - 34.



122

This briefing describes how Northrop-Grumman combined use of the Personal Software 

process (PSP) and CMMI Level 5 to enhance the ROI and reduce defects for an Air Force 

program they were managing.  Significant improvements were noted in both areas.

Huang, L., and Boehm, B., “How Much Software Quality Investment Is Enough: A Value-Based 

Approach”. IEEE Software, Volume 23, Issue 5 (September-October 2006), pp. 88-95.

      A classical problem facing many software projects is determining when to stop testing and 

release the product for use. Risk analysis helps address this issue by balancing the risk

exposure of doing too little with the risk exposure of doing too much. A quantitative 

approach based on the COCOMO II cost-estimation model and the COQUALMO quality-

estimation model helps answer the question, "How much software quality investment is 

enough?" The authors use the models and some representative empirical data to assess the 

relative payoff of value-based testing as compared to value-neutral testing. They include 

examples of the approach's use under differing value profiles.

Humphrey, W.S., Managing the Software Process, Addison-Wesley, Boston, MA, 1989.

      Watts S. Humphrey, drawing on years of experience at IBM and the SEI, provides here 

practical guidance for improving the software development and maintenance process. He 

focuses on understanding and managing the software process because this is where he feels 

organizations now encounter the most serious problems, and where he feels there is the best 

opportunity for significant improvement. Both program managers and practicing 

programmers, whether working on small programs or large-scale projects, will learn how 

good their own software process is, how they can make their process better, and where they 

need to begin

Humphrey, W. S., Snyder, T. R., Willis, R. H., “Software Process Improvement at Hughes 

Aircraft,” 1991,  IEEE Software, 8 (4), pp. 11-23

This article describes ROI information from software process improvement efforts at the 

Software Engineering Division of Hughes Aircraft.  Areas addressed by Hughes are 

discussed, along with costs associated with those improvements. The authors describe the 

yearly savings achieved. Certain non-quantifiable benefits of the process, such as lower 

software professional turnover are also discussed.

Humphrey, W.S., The Personal Software Process, Software Engineering Institute, Carnegie 

Mellon University, Pittsburgh, PA, 2000 (CMU/SEI-TR-2000-022).



123

Humphrey, W.S., The Team Software Process, Software Engineering Institute, Carnegie Mellon 

University, Pittsburgh, PA, 2000 (CMU/SEI-TR-2000-023).

These are companion documents which describe the Personal Software process (PSP) and 

Team Software Process (TSP) respectively, and can be looked upon as source documents for 

these processes.  Both the PSP and TSP are offshoots of the SEI Capability Maturity Model 

(CMM) developed in the late 1980s.  

The PSP extends the CMM to the people who actually do the work; it concentrates on the 

work practices of individual engineers.  The principle behind the PSP is that, in order to 

produce quality software systems, every engineer who works on the systems must do quality 

work.

While the PSP focuses on individual skills, the TSP emphasizes the need for people to work 

together as cohesive units.  It is based on the principle that engineering teams can do 

extraordinary work, but only when they are properly formed.  One feature of the TSP is the 

“team launch” process where teams participate in nine meetings in four days to develop a 

detailed plan and be committed to the plan the team develops.

Humphrey, W.S., "Being a Software Professional", Software Engineering Process Group 2004, 

March 2004, pp. 18 – 19.

This presentation describes the results of companies improving CMM then using the TSP 

when they achieved CMM Level 5.  Estimating accuracy and defect reductions occurred at 

higher CMM levels and when the TSP was used.

Jarzombek, J., "Enterprise-Wide Perspective for Managing Process Improvement", Twelfth 

Annual Software Technology Conference, Salt Lake City Utah, 30 April - 5 May 2000.

An enterprise-wide perspective for managing process improvement can allow a large 

corporation to provide corporate sponsorship, guidance, and a multi-discipline perspective to 

software process improvements. A business strategy can be integrated in the program as well 

as organization process relationships and a process maturity plan. This presentation looks at 

an enterprise-wide process improvement program called the Computer Resources Support 

Improvement Program (CRSIP) at the Ogden Air Logistics Center located at the Hill Air 

Force Base in Utah.



124

Jensen, R., “A Pair Programming Experience”, Crosstalk, Volume 16 #3 (March, 2003), pp. 22-

24.

Agile software development methods, including extreme programming, have risen to the 

forefront of software management and development interest during the last few years. The 

"Agile Manifesto" published in 2001 created a new wave of interest in the agile philosophy 

and re-emphasized the importance of people, along with the idea of "pair programming." As 

defined, pair programming is two programmers working together, side by side, at one 

computer collaborating on the same analysis, design, implementation, and test. The author

was introduced to teamwork and pair programming indirectly as an undergraduate electrical 

engineering student in the 1950s. Later in 1975, he was asked to improve programmer 

productivity in a large software organization. The undergraduate experience led him to an 

experiment in pair programming. The very positive results of this experiment are the subject 

of the case study in this article.

Jensen, R., “An Economic Analysis of Software Reuse”, Crosstalk, Volume 17 #12 (December, 

2004), pp. 4-8

      This article presents a simplified economic analysis of the cost of software reuse. The reuse 

definition used here includes both commercial off-the-shelf (COTS) and existing software 

from an upgraded platform. The results are independent of software estimating tools or 

models. The model used in this analysis relates the cost of software development to the 

reused software level and the costs of developing and maintaining the software components. 

COTS software is a special case of reuse described in this article.

Jones, C., “Software Defect Removal Efficiency”, Computer, April 1996, Vol. 29, No. 4, pp. 94-

95.

The author describes various aspects of software defect removal efficiency as it applies to the 

US software industry. Software defect removal efficiency is the percentage of total bugs 

eliminated before the release of a product. The author views this as a good metric for 

choosing defect removal operations that maximize efficiency and minimize cost and 

schedule.

The article describes how the top companies achieve a greater than 95% software defect 

removal efficiency. The author claims that high levels of customer satisfaction correlate 

strongly with high levels of defect removal efficiency.



125

Jones, C., Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, Boston, 

MA, 2000.

In this book, the author explains qualitative and quantitative approaches to software 

development analysis in three areas, assessments, benchmarks, and process improvements.  

Assessments and benchmark studies can show an organization its current strengths and 

weaknesses, and where to emphasize process improvements.  The author presents a 7-stage 

process improvement program of which the first stage consists of assessments and 

benchmarking.  And the other six are actual process improvement activities.  The author also 

shows how to assess cost, timing, and value of process improvement activities for specific 

programs.

Jones, C., Estimating Software Costs: Bringing Realism to Estimating (Second Edition), 

McGraw-Hill, New York, 2007.

This book is written to provide a clear, complete understanding of how to estimate software 

costs, schedules, and quality using real-world information contained in this book.  The book 

discusses how to choose the correct hardware and software tools, develop an appraisal 

strategy, deploy tests and prototypes, and produce accurate software cost estimates.

This fully updated and expanded volume provides cost-estimating methods for projects using 

modern technologies including Java, object-oriented methods, and reusable components. 

Written by a pioneer and leading authority in the field of software estimation, this new 

edition is the definitive resource for developers building complex software.

Jones, L., "Product Line Acquisition in DoD: The Promises, the Challenges” Crosstalk, Volume 

12 #8 (August 1999), pp. 17-21.

Industrial use of software product line technology has resulted in some impressive savings 

while also improving product quality and delivery time. Although there has been some 

successful use of this technology within the Department of Defense (DoD), there are special 

challenges. This article reports the results of two DoD product line workshops in which 

important issues and successful practices were shared.

Joos, R., “Software Reuse at Motorola,” IEEE Software, September, 1994, pp. 42-47.



126

The author summarizes the three phase approach followed by Motorola to achieve effective 

reuse. The three phases include the grass roots beginning, software management involvement 

and use of tools and technology.

The article describes the approach taken on two pilot projects and the results achieved in 

these pilot.  A cash reward incentive program facilitated reuse. An 85% reuse rate and a 10:1 

productivity savings was achieved. The article concludes with recommendations by the 

author to others that want to initiate a reuse program.

Kelly, J. C., Sherif, J. S., Hops, J., “An Analysis of Defect Densities Found During Software 

Inspections,” Journal of Systems Software, 1992; Vol. 17, pp. 111-117

This article describes an analysis of factors influencing the defect density of products 

undergoing software inspection at the Jet Propulsion Laboratory that require a high level of 

quality. Inspections detect errors as early as possible in the development lifecycle. The 

authors describe the steps involved in performing inspections, which have been tailored from 

Fagan inspections (Fagan 86).

JPL tailored Fagan to improve the quality of software requirements, architectural design, 

detail design, source code, test plans, and test procedures.  Also JPL added to Fagan a “third 

hour” step which includes time for team members to discuss problem solution and to clear up 

open issues raised in inspections.

The results from 203 inspections are summarized. The authors develop a model of defects 

found based on the phase of development being inspected. The average cost to fix defects in 

early phases, versus later phases, is also described. The authors provide some guidelines for 

conducting reviews.

Kimberland, K., “Microsoft’s Pilot of TSP Yields Dramatic Results”, Carnegie Mellon News @ 

SEI No. 2, 2004, pp. 4 - 6.

This article summarizes the results of Microsoft’s use of the Team Software Process (TSP) to 

unite a group of frustrated individual programmers into a team.  The results were a reduction 

in defects and a cost savings.

Kossiakoff, A., and Sweet, W., Systems Engineering: Principles and Practices, John Wiley and 

Sons, Hoboken, NJ, 2003.



127

Systems Engineering Principles and Practice is designed to help readers learn to think like 

systems engineers, to integrate user needs, technological opportunities, financial and schedule 

constraints, and the capabilities and ambitions of the engineering specialists who have to 

build the system. The book devotes particular attention to knowledge, skills, mindset, and 

leadership qualities needed to be successful professionals in the field.   This book is an 

outgrowth of the Johns Hopkins University Master of Science Program in Engineering, 

developed to meet an urgent and expanding need for skilled systems engineering in industry 

and government. The authors, who have sixty years of collective experience in this field, 

were part of the curriculum design team as well as members of the initial faculty. The book is 

used to support four core courses in the curriculum, and has been exhaustively classroom 

tested. 

Krasner, H., "Accumulating the body of Evidence for The Payoff of Software Process 

Improvement", Krasner Consulting, November 19, 1997, pp. 5 - 13.

This paper addresses payoffs associated with SPI.  Section 4, “Case Histories of SPI 

Payoffs”, documents several case histories of successful SPI implementation, including 

results from NASA, IBM, Hewlett-Packard, Raytheon, and Motorola – India.  The 

organizations had SPI initiatives lasting from 5-10 years.  The payoffs sometimes took 

several years to be observable through measurements, but were always noteworthy.

Layman, L., Williams, L., and Cunningham, L., "Exploring Extreme programming in Context: 

An Industrial Case Study”, Proceedings of the Agile development Conference (ADC’04),

IEEE, 2004.

A longitudinal case study evaluating the effects of adopting the Extreme Programming (XP) 

methodology was performed at Sabre Airlines Solutions.  The case study compares two 

releases of the same product.  One release was completed prior to the team’s adoption of the 

XP methodology, and the other was completed after two years of XP use.  There were 

marked improvements in productivity and quality, which suggests that use of XP can result in 

improvements in these areas.

Leach, R., Software Reuse, New York, McGraw-Hill, 1997.

      While this book will provide a complete description of software reuse, it focuses on methods 

for reuse that are feasible without major investments in new software methodology, as well as 

on cost estimation issues and on certification of reusable software components.



128

Lee, E., "Software Inspections: How to Diagnose Problems and Improve the Odds of 

Organizational Acceptance," Crosstalk,  Volume 10 #8 (August 1997), pp. 10-13.

This paper documents lessons learned by the author on Lockheed Martin's space shuttle 

onboard software project.  On this project, formal inspections form the cornerstone of their 

quality program.  On their project, they are able to achieve error detection rates of 85 to 90%.  

Within other projects, success is not as uniform.  The author observes that inadequate training 

is one of the major causes of failures in inspections, especially inadequate training by 

moderators.  This article is of importance to this paper because it continues to demonstrate 

successes with use of inspections.

Lierni, P., “The Affect of Agile Software Development Methods on Department of Defense 

(DoD) Systems Acquisition Programs”, Technical Paper from Deputy Under Secretary of 

Defense for Acquisition and Technology (DUSD A&T) Software Engineering and Systems 

Assurance (SSA) Deputy Directorate, 24 January 2007

This paper describes the results of a 2006 survey to determine the current state of agile 

software development.  More than 80% of the more-than 700 responding organizations do 

use agile methods.  More than 25% of the organizations realized increased productivity, 

reduced cost and schedule, and reduced numbers of defects when they used agile methods.  

The paper does provide a large number of references on agile methods.

Lim, W. C., “Effects of Reuse on Quality, Productivity and Economics,” IEEE Software, 

September, 1994, pp. 23-31.

Hewlett-Packard (HP) has found that reuse can have a significant and positive impact on 

software development. The article presents metrics from two HP reuse programs that resulted 

in improved quality, increased productivity, shortened time-to-market and enhanced 

economics resulting from reuse. The information presented summarizes findings at two HP 

facilities.

Statistics presented include reuse percentages, defect reduction and productivity 

improvements from reuse. Costs to create reusable components are also presented. The effort 

increase by phase to create reusable components is discussed.

Linger, R. C., “Cleanroom Software Engineering for Zero-Defect Software,” Fifteenth 

International Conference on Software Engineering, 1993, pp. 2-13.



129

This article describes characteristics and benefits of Cleanroom software development. 

Cleanroom software engineering teams are developing software with zero defects with high 

probability and with high productivity. Correctness is built in by the development team 

through formal specification, design and verification. Team correctness verification replaces 

unit testing and debugging, and software enters system testing directly, with no execution by 

the development team. All errors are accounted for from first execution.  The certification 

team does not test in quality, but rather certifies the quality of software with respect to its 

design. Cleanroom development is being successfully used at IBM and other organizations.

The author cites reliability figures from 15 software projects. Product development schedule 

comparisons are made and the author describes the box structure of specifications (black, 

state and clear).

Lipke, W., Butler, K., “Software Process Improvement: A Success Story,” CrossTalk, Number 

38, November 1992, pp. 29-31, 39.

This article provides an overview of the Aircraft Software Division (LAS) of the Oklahoma 

City Air Logistics Center (OC-ALC), Tinker AFB, Oklahoma, process improvement efforts, 

assessments, and lessons learned. LAS has a technical and management team to oversee their 

process improvements. They feel these teams are the single most important key to the success 

of process improvement.

Their SEI evaluation identified 44 improvements. ROI data on 18 projects is summarized. 

Intangible improvements included increased communications, increased customer 

satisfaction and on time and within budget software delivery.

Lougee, Hoyt, “DO-178B Certified Software: A Formal Reuse Analysis Approach”, CrossTalk, 

Volume 18, #1 (January, 2005), pp. 20-25.

This article discusses software reuse as an alternative to designing from scratch for a next-

generation system.  Reuse can provide significant return on investment and time-to-market 

advantages; however, one must be rigorous in his or her approach to planning, analyzing, 

executing, and tracking reuse.  While this article highlights DO-178B certified software, the 

ideas presented can be applied to almost all software programs.

Madachy, R., “Process Improvement Analysis of a Corporate Inspection Program,” Seventh 

Software Engineering Process Group Conference, Boston, MA, May 23, 1995.



130

This paper discusses return on investment and defect prevention results from the Litton Data 

Systems inspection process. Over 400 people were trained and 600 inspections were 

performed utilizing this process. The inspection process is similar to Fagan's (1986) 

inspection process, but Litton has made several modifications.

Litton has experienced a 30% reduction of errors found during systems integration and 

system test. Their division had set goals of saving at least 50% of integration effort by 

spending more effort during design and coding for inspections. They have achieved this 

objective in one major project. Other results reported include 2.3 person hours saved in 

testing for every inspection hour; 73% of all 600 inspections have produced a positive return; 

and 3% of the total project effort was used for inspections.

Manzo, John, “Odyssey and Other Code Science Success Stories”, CrossTalk, Volume 15, #10 

(October, 2002)), pp. 19-21, 30.

       This article describes the success achieved using Code Science, an agile software 

development method based on eXtreme Programming (XP), to develop a complex industrial 

automation application. With a brief review of XP as background, code science is described 

in terms of refinements made to XP in applying it to a wide variety of application domains 

and industries over a period of almost four years. Included are real-world insights from the 

developers' experience in applying this agile development method, concluding with a 

quantitative measure of the effectiveness of XP since its inception almost four years ago.

Matsumura, K., "Software Reuse - What is Different With Ordinary Software Development", 

Proceedings of the Thirteenth International Conference on Software Engineering, IEEE, 

Austin, Texas, 13-16 May 1991, pp. 55-57.

This article was a part of a panel discussion on software reuse.  The author discusses the 

application of a standard component approach to reuse used at Toshiba for several projects.  

The application of reuse resulted in a defect reduction of 20% to 30% during integration 

testing.

Maurer, F., and Martel, S., “Extreme Programming: Rapid Development for Web-Based 

Applications”, IEEE Internet Computing, Volume 6, Issue 1 (January-February 2002), pp. 

86-90.

      Agile processes like extreme programming (XP), Scrum, Crystal, and adaptive software 

development aim to increase a software organization's responsiveness while decreasing 



131

development overhead. They focus on delivering executable code and see people as the 

strongest ingredient of software development. We offer an overview of the philosophy and 

practice behind XP, which is currently the most popular agile methodology.

McAndrews, D., The Team Software Process: An Overview and Preliminary Results of Using 

Disciplined Practices, Software Engineering Institute, Carnegie Mellon University, 

Pittsburgh, PA, 2000 (CMU/SEI-TR-2000-015).

This report describes the TSP technology as an implementation strategy for teams that are 

attempting to apply disciplined software process methods. It provides some of the 

background and rationale for the TSP approach, as well as an overview of the technology. 

Then, the report presents initial results of the use of the TSP technology in four different 

organizational settings. In each of these organizations, the data show that defect densities 

found in system- level test activities and the actual duration of these system-level tests were 

reduced significantly with the use of the TSP. In addition, the accuracy of software estimates 

improved, and the variation in estimation accuracy was significantly reduced. Based on the 

analysis of these results, some assertions are made to help organizations set goals for 

improvement.

McCann, B., “When Is It Cost-Effective to Use Formal Software Inspections”, Crosstalk, 

Volume 17 #3 (March, 2004), On-Line Article.

This article presents a method quantitatively to determine the parametric limits to cost-

effectiveness of software code inspections.  The analysis presented leads to the conclusion 

that it is cost-effective to inspect both initial code and modifications made to the code after 

initial coding.  Any exceptions should be carefully considered based on quantitative analysis 

of the projected impact of the exceptions.  Also, any proposed substitution for rigorous 

inspections should be carefully evaluated for cost-effectiveness prior to replacing or 

modifying the process.

McGarry, F., Jeletic, K., “Process Improvement as an Investment: Measuring Its Worth,” NASA 

Goddard Space Flight Center, Software Engineering Laboratory, SEL-93-003, 1993.

This paper discusses process improvement and measuring, from a Return on Investment 

perspective, the benefits achieved from the improvement.  The article compares and contrasts 

the SEI CMM to the NASA SEL improvement model and how improvements are measured 



132

in each model.  The article then details the improvements observed at the SEL over an 18 

year period, including improvements in reuse, development costs, and quality.

McGibbon, Thomas, “An Analysis of Two Formal Methods: VDM and Z”, DoD Data Analysis 

Center for Software (DACS), Rome, NY, 20 August 1997.

This paper compares and contrasts the strengths and weaknesses of the Vienna Development 

Method (VDM) and Z in the software design life cycle phase, and compares and contrasts 

VDM and Z to other formal models. Tool support, lessons learned, and technical and 

achieved business benefits are emphasized. Based on available data, this paper analyzes the 

return-on-investment (ROI) from use of these methods, and this ROI data is compared to ROI 

data from cleanroom software engineering and other process improvement methods.

Miller, J. (2000). “Applying Meta-Analytical Procedures to Software Engineering Experiments”, 

Journal of Systems and Software, V. 54, N. 1: 29-39.

      The treatise of this paper is: Can meta-analysis be successfully applied to current software 

engineering experiments? The question is investigated by examining a series of experiments, 

which themselves investigate which defect-detection technique is best.  Applying meta-

analysis techniques to the software engineering data is  relatively straightforward, but 

unfortunately the results are highly unstable.  The meta-analysis shows that the results are 

highly disparate and do not lead to a single reliable conclusion. The reason for this deficiency 

is the excessive variation within various components of the experiments. The paper outlines 

various ideas from other disciplines for controlling this variation and describes a number of 

recommendations for controlling and reporting empirical work to advance the discipline 

towards a position, where meta-analysis can be profitably employed.

Millot, Philippe, "Thomson CSF - SPI Return on Investment (ROI) Calculation - Lessons 

Learned", European Software Engineering Process Group 1998, 1999, Software Engineering 

Information Repository - Carnegie Mellon, pp. 1 - 14.

This presentation describes the return on investment realized by Thomson-CSF as they 

advanced to CMM Level 2 and, later, to CMM Level 3.  Not only did ROI improve, but 

defects were also reduced.

Mills, H.D., Dyer, M., Linger, R.C., “Cleanroom Software Engineering,” IEEE Software, 

September 1987, pp. 19-24.



133

This article, written by the developer of Cleanroom software engineering, Harlan Mills, 

describes early successes employing this methodology. The authors believe that software can 

be engineered under statistical quality control and that certified reliability statistics can be 

provided with delivered software.

Cleanroom development is an incremental development methodology and the authors 

describe the typical size of increments. The productivity and schedule impact of Cleanroom 

development is also discussed.

Munson, R., “How the TSP Impacts the Top Line”, Crosstalk, Volume 15 #9 (September, 2002), 

pp. 9-11.

The thrust of this article is to show how productivity improvements from practices such as 

the TSP affect a corporation’s profitability, or “top line”. This article compares the 

development costs associated with teams in a traditional test-based organization to TSP 

teams.  The article also presents product and quality data from several TSP projects at one 

industry organization. 

Nawrocki, J. and Wojciechowski, A., "Experimental Evaluation of Pair Programming", 

Proceedings of ESCOM 2001, 2001, pp. 269 - 276.

Pair programming is a kind of collaborative programming where two people are working

simultaneously on the same programming task. It is one of the key practices of eXtreme

Programming.  In the paper pair programming is compared with two variants of individual 

programming: one of them is based on Personal Software Process that has been proposed by 

W. Humphrey, and the other is a variant of eXtreme Programming tailored to individuals. 

Four experiments are described that has been performed at the Poznan University of 

Technology. During those experiments 21 students wrote 4 C/C++ programs ranging from 

150 to 400 LOC. The obtained results are compared with the results of similar experiments 

described by J.T. Nosek and L. Williams, et al.

Northrop, L., “Software Product Lines: Reuse that Makes Business Sense”, ASWEC 2006 

Conference, 2007.

This presentation explains what software product lines are, the benefits of having them, and 

how to develop and manage product lines.  Several examples of company use and associated 

benefits are given.  The presenter shows how software product lines and associated 

systematic reuse are the hallmark of reuse in this decade as components were in the 1990s. 



134

Nosek, J. T., "The Case for Collaborative Programming", Communications of the ACM, Volume 

41 No. 3, March 1998, pp. 105 - 108.

Collaborative programming is a term used to refer to two or more programmers that are 

working together on the same code and algorithm. In an experiment that compares the 

performance of individual programmers vis-a-vis programmers working in pairs, it was 

observed that the teams created more functional and readable programs. In addition, levels of 

enjoyment and confidence are higher and less time is utilized to develop the programs.

O'Connor, J., Mansour, C., Turner-Harris, J., Campbell, G., “Reuse in Command-and-Control 

Systems,” IEEE Software, September, 1994, pp. 70-79.

This paper discusses the authors experience at Rockwell International’s C2 Systems Division 

(CCSD) with Software Productivity Consortium’s Synthesis methodology for reuse Their 

experience has resulted in a partially automated environment that supports specification of 

systems and the generation of requirements, design and code.

The authors summarize the technology, the benefits derived from the technology, and the 

costs to create the environment. The payoff of the technology is also described.

Oldham, L.G., Putman, D.B., Peterson, M., Rudd, B., Tjoland, K., "Benefits Realized from 

Climbing the CMM Ladder", Crosstalk, Volume 12 No. 5, May 1999, pp. 7 - 10.

Industrial use of software product line technology has resulted in some impressive savings 

while also improving product quality and delivery time. Although there has been some 

successful use of this technology within the Department of Defense (DoD), there are special 

challenges. This article reports the results of two DoD product line workshops in which 

important issues and successful practices were shared.

Olson, T., “Piloting Software Inspections to Demonstrate Early ROI,” Notes from Presentation 

given at the 1995 SEPG Conference

This presentation describes a software inspection pilot conducted at Cardiac Pacemakers, Inc. 

(CPI). CPI makes pacemakers and defibrillators that require life-critical software. Inspections 

are being used to improve the reliability of the software.

The paper describes some industry success stories with inspections, the inspection process 

and key ROI questions. The author compares the effort to fix a defect early in the lifecycle to 

the effort at the end of the development process.



135

O’Neill, D., "Determining Return on Investment Using Software Inspections" Crosstalk,  

Volume 16 #3 (March 2003), pp. 16-21.

This article examines the defined measurements used to form a derived metric for return on 

investment.  These measurements involve additional cost multiplier, defect detection rate, 

cost to repair, and detection cost.  The article further examines the behavior of these 

measurements and metrics for various software product-engineering styles using data 

collected from the National Software Quality Experiment.

Paulk, Mark C., Chrissis, Mary Beth, "Mastek Limited, Mumbai, India", The 2001 High Maturity 

Workshop, January 2002, pp. 57 - 63.

In March of 2001, the Software Engineering Institute (SEI) in Pittsburgh, PA, hosted a 

workshop for high maturity organizations to better understand practices that characterize 

Capability Maturity Model for Software (Software CMM) Level 4 and 5 organizations. 

Topics of discussion included practices described in the Software CMM as well as other 

practices that have a significant impact in mature organizations. Important themes included 

statistical process control for software, the reliability of Level 4 and 5 assessments, and the 

impact of the CMM Integration (SM) effort. Additional topics solicited from the participants 

included measurement, Six Sigma, Internet speed and process agility, and people and cultural 

issues. This report contains overviews of more than 30 high maturity organizations and the 

various working group reports from the workshop.

Phillips, M., “CMMI V1.2: What Has Changed and Why”, Crosstalk, Volume 20 #2 (February 

2007), pp. 4-7

Since the source document for each CMMI release is more than 500 pages in length, it is 

useful to have articles like this that summarize the current version of the CMMI and notable 

changes from previous versions.  This article explains the major changes for Version 1.2 

(released in 2006) and the rationale for these changes.  Phillips is a most credible source since 

he is the Program Manager for CMMI Version 1.2 at the SEI.

     This article, like most all others about the CMMI, assumes the reader has familiarity with the 

CMMI.  Anyone who wants to use the CMMI or needs to learn about it should become 

familiar with the source document for the CMMI (referenced in this bibliography).

Pipp, W., "Software Process Improvement Pays", Twelfth Annual Software Technology 

Conference, Salt Lake City Utah, 30 April - 5 May 2000.



136

This presentation responds to the opinion that, with tight schedules and budgets, a company 

just can not afford software process improvement.  Raytheon Missile Systems determined 

that pursuing CMM Level 5 would be worth the investment.  They experienced positive 

returns when they advanced from CMM Level 2 to Level 4 from 1995 to 1998.

Pitterman, B., "Telcordia Technologies: The Journey to High Maturity", IEEE Software, Volume 

17 No. 4, July/August 2000, pp. 89 - 96.

In early 1994, the software development groups across Telcordia Technologies underwent 

serious self-examination. The main quality indicators showed the business was in trouble. 

Field fault density was at 48 faults per 1,000 function points, well above the industry average. 

Customer satisfaction was at the 60% level. Telcordia had just failed the International 

Standards Organization (ISO) 9001 registration audit. In the past the organization had tried 

several times to improve product quality and customer satisfaction, but the results tended to 

be over-engineered. In 1994, a small team of Telcordia software process specialists launched 

a pervasive quality initiative that set the standards for all future software development. After 

initial standards were developed, certification became the next goal and rallying point for the 

organization. This article describes Telcordia’s journey to International Standards 

Organization 9001 certification and experience and successes with the Software Engineering 

Institute Capability Maturity Model (CMM).

Pitts, J. F., "Integrated Process Capability: A Quantum Leap in Return on Investment", 

Thirteenth Annual Software Technology Conference, Salt Lake City Utah, 29 April - 3 May 

2001.

An integrated process capability developed at Northrop Grumman resulted in a large increase in 

return on investment. This capability integrated standard platforms and network architectures, 

standard tools, tools to process enablers, processes, and metrics into one infrastructure that created 

efficiency and further improvements. This presentation describes this infrastructure and how it 

evolved over time at Northrop.

Porter, R., and DeToma, D., “A Mult-Site Software Process Framework, CrossTalk, Volume 12, 

#10 (October, 1999), pp. 20-25.

Today, software process leads to the new paradigm, "Better, faster, cheaper — through 

continuous software process improvement (SPI)." However, developing a standard software 

process might be considerably easier than the task of rolling it out to multiple locations across 

the U.S. and perhaps overseas, a concept we refer to as "zero geography." GTE Government 



137

Systems Corp. (GSC) successfully implemented its SPI program across North America using 

a framework based on the 3 C's: commitment, continuity, and communications. With zero 

geography, GSC was able to leverage its existing assets, accelerate schedules, and minimize 

investments while reaping the full benefits of SPI.

Poulin, J., Measuring Software Reuse, Addison-Wesley, Reading, MA, 1997.

      This book explains the most important issue in reuse measurement - defining what to count 

as reuse, how to count it, and why. Without a uniform understanding of what to count, all 

reports of reuse levels and benefits become automatically suspect. By addressing this issue, 

this book puts reuse measurement into a reliable and consistent context. Furthermore, it 

emphasizes a fundamental truth in software reuse: Business decisions drive reuse.

Pressman, Roger S., Software Engineering; A Practitioner’s Approach (Sixth Edition), McGraw 

Hill, New York, 2005.

This has been one of the best selling guides to software engineering for both students and 

industry professionals for the past twenty-five years.  This sixth edition is organized in five 

parts: (1) The Software Process, including prescriptive and agile process models, (2) 

Software Engineering Practice, with emphasis on UML-based modeling,(3) Applying Web 

Engineering, (4) Managing Software Projects, and (5)Advanced Software Engineering 

Topics, including formal methods, cleanroom software engineering, component-based 

approaches, and reengineering. There is also a web site designed to provide valuable 

resources for students, instructors and professionals

Reifer, Donald J., Making the Software Business Case, Addison-Wesley, Boston, MA, 2002

      This book shows how to build an effective business case when one needs to justify and 

persuade management to accept software process improvements.  Based on real-world 

scenarios, this book covers common situations where business cases analyses are required 

and explains several techniques which have proven successful in the past.  The book provides 

examples of successful business cases and methods to present management with compelling 

reasons for adopting software process improvement activities.

Reifer, Donald J., “Profiles of Level 5 CMMI Organizations”, Crosstalk, Volume 20 #1 (January 

2007), pp. 24-28



138

      Many firms that have achieved Level 5 using the Software Engineering Institute’s Capability 

Maturity Model®Integration (CMMI®) have taken a different tact in justifying their process 

improvement initiative’s budget. This article summarizes the profiles of high maturity 

organizations and explains how they go about justifying their budgets. The article also 

provides insight into the differing tactics that these firms use to win the battle of the budget 

and the reasons for them.

Richter, A., "Quality for IT Development and IT Service Operations: CMMI and ITIL in a 

Common Quality Approach", European Software Engineering Process Group, London, UK, 

June 2004.

This presentation describes the “return on quality” as DB Systems, a German company, 

advanced from CMM Ledvel 2 to CMMI Level 3.  It was found that the cost per function 

decreased substantially as the company made this progression.

Rooijmans, J., Aerts, H., and van Genuchten, M., “Software Quality in Consumer Electronics 

Products”,  IEEE Software, January, 1996, pp. 55-64.

      Despite the rapidly growing size of the software included in consumer electronics products, 

manufacturers must keep the number of software defects in the field at zero to avoid financial 

disaster. The authors describe the process-improvement efforts they undertook to achieve this 

increasingly challenging goal.

Rostaher, M. and Hericko, M., "Tracking Test First Pair Programming - An Experiment", 

Proceedings of XP/Agile Universe 2002, 2002.

The authors ran an experiment where a group of professional programmers working in pairs 

and a control group programming alone implemented a small system from pre-defined 

requirements.  The comparison of the control group of individuals and the group 

programming in pairs spent almost the same time to complete the tasks.  The authors believe 

that a more detailed research study apart from evaluating test-first programming is needed to 

compare solo programming with pair programming in the investigated group.

Rozum, J. A., “Concepts on Measuring the Benefits of Software Process Improvement,” 

(CMU/SEI-93-TR-09, ESC-93-TR-186). Pittsburgh, Pennsylvania: Software Engineering 

Institute, Carnegie Mellon University, June 1993.



139

This report describes some concepts that organizations can use to develop a method for 

determining the benefits they have received from software process improvement (SPI) 

activities. Determining how SPI has financially impacted an organization is a difficult 

process because many factors, such as customer satisfaction from improved product quality 

and thus new product sales for a company, are difficult to measure.

The author describes a SPI benefit index (the ratio of dollars saved from an SPI program to 

the cost of the SPI program) for measuring the benefits of an SPI program. The article 

discusses how an organization can measure the costs (nonrecurring and recurring) associated 

with investing in SPI. The article then provides some methods for quantifying the dollar 

savings associated with increased productivity of the software staff, early error detection of 

software requirements errors, reduced rework costs due to an overall reduction in errors, 

reduction in maintenance work and the elimination of process steps as an organization's 

maturity increases.

Key measurements to collect to quantify SPI benefits are identified: staff hours, errors and 

size. Various methods of collecting this data and expanding beyond this basic set are then 

briefly discussed.

Schatz, B., and Abdelshafi, I., “Primavera Gets Agile: A Successful Transition to Agile 

Development” IEEE Software, Volume 22, Issue 3 (May-June 2005) pp. 36-42.

Primavera Systems provides enterprise project portfolio management solutions that help 

customers manage their projects, programs, and resources. When we decided to improve how 

we build software and increase the quality of life for everyone on the team, we found our 

answer in agile software development. Adopting agile practices is a process of continuous 

learning and improvement. Primavera's development team is a model for others looking to 

adopt agile processes.

Scott, W., "The Business Benefits of CMMI at NCR Self Service", European Software 

Engineering Process Group, London, UK, June 2004.

This presentation describes the improvements made at NCR Self Service in Dundee, Scotland 

as they advanced from CMM Level 1 to CMM Level 3 to CMMI Level 2 to CMMI level 3.  

There were noted reductions in project cycle time as the company progressed through levels.  

The presentation also addresses cultural issues that challenged progress and how the company 

overcame them.



140

Shelton, G., "CMMI - The Current State", CMMI Technology Conference, Denver, CO, Nov 

2003.

This presentation describes the results of several Raytheon sites from using the CMMI for 

process improvement.  The sites realized improvements in ROI, early defect containment, 

earned value, and rework costs.

Sherer, S. W., Kouchakdjian, A., Arnold, P. A., “Experience Using Cleanroom Software 

Engineering,” IEEE Software, May, 1996, pp. 69-76.

This article describes the authors’ experiences with Cleanroom Software Engineering at the 

US Army’s Life Cycle Software Engineering Center at Picatinny Arsenal, New Jersey.  The 

authors describe the major costs of the technology transfer to the development team: 

classroom training and coaching.  Significant increases in the team morale and 

communication resulted from applying this method.  Productivity increases, cost breakdown, 

quality improvements and ROI are detailed in this paper.

Singh, R., "CMMI & Process Improvement ROI & CAR at Level 2", Fourth Annual CMMI 

Technology Conference and User Group, Nov 2004.

This presentation describes assistance provided by the Software Engineering Institute (SEI) to 

the aerospace business unit of a large company. Projects at the business unit were running 

over cost and schedule with poor quality. The business unit achieved Capability Maturity 

Model for Software (CMM-SW) Level 2, achieved Level 3, and then migrated to Capability 

Maturity Model Integrated (CMMI). They adopted Value Based Management and Causal 

Analysis and Resolution. These improvements shifted the culture, reduced defects by 44 

percent, and saved $1.6 million per year in mechanical engineering.

Stapleton, J., Dynamic Systems Development Method: The Method in Practice, Addison-Wesley, 

Harlow, England, 1997.

The Dynamic Systems Development Method (DSDM) is about people, not tools. It provides 

a framework of controls and best practice for rapid application development. It was created 

by a consortium of organizations and since its publication in January 1995, it has proved to 

be extremely effective in delivering maintainable systems which match the needs of the 

business better than those produced using traditional life cycles. This book provides practical 

guidelines on the implementation of key elements of the method, clear recommendations for 

the roles and responsibilities of the members of the development team, advise on which type 



141

of application is most likely to benefit from the method, eight lengthy case studies and 

numerous examples and anecdotes.

Strassman, P. A., The Business Value of Computers, The Information Economics Press, New 

Canaan, CT, 1990.

This book examines evaluating the value of Information Technology (IT) to business.  The 

author derived a new value-added metric, Return-on-Management (ROM), and argues that 

ROM is a more suitable measure than Return on Investment (ROI) or Return on Assets 

(ROA) in evaluating investments in MIS because ROM focuses on the productivity of 

management, the principal user of computers.

The following quotes about risk analysis made by the author are significant to the analysis 

performed in my paper: "By making the risks of technology more explicit, you create a 

framework for diagnosing, understanding and containing the inherent difficulties associated 

technological and organizational innovation," "The best way to avoid failure is to anticipate 

it," and "Risk analysis is the correct analytical technique with which one can examine the 

uncertainty of Information Technology investments prior to implementation."

The author also noted that the business value of IT is the present worth of gains reflected in 

business plans when you add IT, which equals the difference of the business plan when you 

add IT and business plan without changes to IT.

Some other measurements of business value discussed by the author include gains in market 

share, better prices, reduced inventories, or highly motivated employees.  Senior executives 

must compare IT investments with other uses of money.

Stutzke, R., Estimating Software-Intensive Systems, Pearson Education, Inc., Upper Saddle 

River, NJ, 2005.

Many software projects fail because their leaders don't know how to estimate, schedule, or 

measure them accurately. Fortunately, proven tools and techniques exist for every facet of 

software estimation. Estimating Software-Intensive Systems brings them together in a real-

world guidebook that will help software managers, engineers, and customers immediately 

improve their estimates -- and drive continuing improvements over time. 

Dr. Richard D. Stutzke presents a disciplined and repeatable process that can produce 

accurate and complete estimates for any project, product, or process, no matter how new or 



142

unusual. Stutzke doesn't just describe formal techniques: He offers simple, easy-to-use 

templates, spreadsheets, and tools you can start using today to identify and estimate product 

size, performance, and quality—as well as project cost, schedule, and risk reserves

Tockey, Steve, Return on Software – Maximizing the Return on Your Software Investment, 

Addison-Wesley, Boston, MA, 2005.

This is a book about making software technical choices in a business context.  According to 

the author, most software professionals do not know how to consider the business aspects of 

their software decisions, nor do they understand the importance of business aspects.  

However, business consequences should play a role in choosing projects, choosing a 

development method, choosing algorithms and data structures, and determining the amount 

of testing to be done.  He includes chapters on inflation, depreciation, tax considerations, and 

other factors that should be addressed in making choices.

Tower, J., “Investment bank Technology Examples of CMMI Benefits”, Fourth Annual CMMI 

Technical Conference and User Group, Denver, CO, November, 2004.

This presentation describes benefits obtained by software process improvement at JP 

Morgan, a large investment bank. Fifty three out of 59 groups are at Level 2 in the Software 

Engineering Institute (SEI) Capability Maturity Model Integration (CMMI), and two groups 

are at Level 3. Quantitative data is presented on changes in schedule slippage, defects, Return 

on Investment, and productivity. Implementation of CMMI Level 2 processes and 

deliverables satisfy four out of six Information Technology (IT) control objectives required 

by Sarbanes-Oxley. 

Tukey, J.W., Exploratory Data Analysis, Addison-Wesley, Boston, MA, 1977.

The approach in this introductory book is that of informal study of the data. Methods range 

from plotting picture-drawing techniques to rather elaborate numerical summaries. Several of 

the methods are the original creations of the author, and all can be carried out either with 

pencil or aided by hand-held calculator.

Urioste, M., "Tomahawk Cruise Missile Control: Providing the Right Tools to the    Warfighter", 

Crosstalk, Volume 17 No. 9, September 2004, pp. 8 - 10.



143

With fast-changing targets, unconventional enemies, and shadowy, pop-up targets of 

opportunity, our warfighters require the very best software solutions that take advantage of 

newest-generation cruise missile capabilities. The Tactical Tomahawk Weapon Control 

System gives the United States’ and the United Kingdom’s naval warfighters the right tools 

to carry out today’s demanding strike missions.

van Solingen, R., “Measuring the ROI of Software process Improvement” IEEE Software, 

Volume 21, Issue 3 (May-June 2004) pp. 32-38.

Software process improvement (SPI) has been on the agenda of both academics and 

practitioners, with the Capability Maturity Model as its de facto method. Many companies 

have invested large sums of money in improving their software processes, and several 

research papers document SPI's effectiveness. SPI aims to create more effective and efficient 

software development and maintenance by structuring and optimizing processes. SPI assumes 

that a well-managed organization with a defined engineering process is more likely to 

produce products that consistently meet the purchaser's requirements within schedule and 

budget than a poorly managed organization with no such engineering process. We discuss 

about the measuring the ROI in software process improvement.

Verma, D., "The Value of Systems Engineering: Some Perspectives from Commercial Industry", 

Systems Engineering: A Retrospective Review and Benefits for Future Air Force Systems 

Acquisition, 27-28 February 2007, National Academies.

This presentation describes how systems engineering and architecture techniques can be 

applied to software projects, and the results of employing systems engineering and 

architecture techniques to 62 software projects at IBM.  The projects for which systems 

engineering and architecture techniques were used had significantly greater productivity (and 

lower costs), shorter development times, and fewer defect hours during warranty than for the 

projects where these techniques were not used.  The presentation also describes work in 

progress at Nokia to use systems engineering techniques for their software development 

projects.

Violino, R., "Measuring Value: Return on Investment - The Intangible Benefits of Technology 

Are Emerging as the Most Important of All," Information Week, Issue 637 (June 30, 1997), 

pp. 36-44.



144

Although not an article from a technical journal, this article makes some interesting points 

about calculation of ROI.  This article grapples with establishing ROI measures for use of 

Information Technology (IT).  Since measuring ROI is so difficult to IS managers, some new 

"intangible" ROI measures are starting to appear: product quality off the assembly line, 

customer satisfaction after an interaction, and faster time to market - these measures reflect, 

the author contends, a company's real sources of value and are what customers truly care 

about.  This article discusses an approach discussed extensively in my paper - performance of 

a risk analysis to estimate ROI.

The author believes "There's a need for new metrics that go beyond the traditional industrial 

age measures that focus on cost analysis and savings."  The author polled 100 IT managers to 

understand the importance of ROI calculations in IT investments in their organization.  Of 

those polled, 45% require ROI calculation, 80% say ROI is useful, only 20% have formal 

ROI measures, and 25% have plans to adopt ROI measures in the next 12 months.

Vu, John D., "The Process Improvement Journey of Boeing Information Services, Wichita", 

SEPG 2005, Seattle, WA, March 8, 2005.

A presentation by Boeing about software process improvement lessons learned. Presentation 

explains why SPI is important, common reactions and misconceptions, and a look at the 

benefits Boeing experienced after implementing several improvements. Presented at the 

SEPG 2004.

Walter, L., "Software Process Achievement", The 1999 Software Engineering Symposium, 

Pittsburgh, PA, 30 August - 2 September 1999.

The Oklahoma City Air Logistics Center (ALC) has observed significant achievements in 

improving software processes. This presentation reviews successful process improvements 

undertaken and the impacts they have had on the organization as a whole. Benefits observed 

include increased productivity, reduced maintenance and rework, improved schedule 

performance and increased customer satisfaction.

Webb, D., and Humphrey, W.S., “Using the TSP on the TaskView Project”, Crosstalk, Volume 

12 #2 (February, 1999), pp. 3-10. 

This article reports the first results of using the Team Software Process (TSP)TM on a 

software-intensive system project. The TSP was developed by the Software Engineering 

Institute (SEI) to guide integrated teams in producing quality systems on their planned 



145

schedules and for their committed costs. The TaskView team at Hill Air Force Base, Utah 

used the TSP to deliver the product a month ahead of its originally committed date for nearly 

the planned costs. Because the engineers' productivity was 123 percent higher than on their 

prior project, they included substantially more function than originally committed. Testing 

was completed in one-eighth the normal time, and as of this writing, the customer has 

reported no acceptance test defects.

Weller, E. F., “Lessons Learned From Three Years of Inspection Data,” IEEE Software, 

September 1993, pp. 38-45.

This article describes inspection experiences at Bull HN Information Systems Major Systems 

Division. The article describes the major metrics collected during the inspections. Defect 

detection rates are summarized. Lessons learned include data collection principles, metric 

naming conventions, ideal inspection team size and effectiveness profiles. The efficiency of 

defect removal is summarized and four project experiences are analyzed.

Wezka, J., Babel, P., and Ferguson, J., “CMMI: Evolutionary Path to Enterprise Process 

Improvement”, Crosstalk, Volume 13 #7 (July 2000), pp. 8-11. 

This is a useful introduction to the CMMI and the rational behind it.  The authors 

acknowledge the many sponsoring agencies for this effort and show why it was needed.  They 

also describe the CMMI product suite and provide ideas for organizations to transition from 

other methods to using the CMMI.

Weszka, J., "Lockheed Martin Benefits Continue Under CMMI", Fourth Annual CMMI 

Technology Conference and User Group, Nov 2004.

Lockheed Martin has been pursuing software process improvement to achieve Level 5 in the 

Software Engineering Institute (SEI) Capability Maturity Model - Integrated (CMMI), among 

other initiatives. This presentation describes benefits obtained at four Lockheed Martin 

organizations, namely Systems Integration (Owego, NY), Maritime Systems & Sensors â€“ 

Tactical Systems (Eagan, MN), Maritime Systems & Sensors â€“ Radar Systems (Syracuse, 

NY), and Maritime Systems & Sensors - Undersea Systems (Manassas, VA). Metrics 

discussed include cost and schedule performance indices, productivity, and defect density.

Williams, L., Kessler, R., Cunningham, W., and Jeffries, R., “Strengthening the Case for pair 

Programming,” IEEE Software, Volume 17, Issue 4 (July – August 2000), pp. 19-25.



146

The software industry has practiced pair programming (two programmers working side by 

side at one computer on the same problem) with great success for years, but people who 

haven't tried it often reject the idea as a waste of resources. The authors demonstrate that 

using pair programming in the software development process yields better products in less 

time-and happier, more confident programmers.

Wohlwend, H., Rosenbaum, S., “Software Improvements in an International Company,” 

Fifteenth International Conference on Software Engineering, 1993, pp. 212-220.

This article summarizes software process improvements at Schlumberger’s Laboratory for 

Computer Science (SLCS) which began in 1989.  Seventy-six organizations and 2000 

developers are involved in software development. Their SEI assessment identified 

improvements required in project management, process definition and control, and project 

planning and control.

SLCS has focused on the improvements identified by the SEI, as well as requirements 

management, software project tracking and oversight, configuration management and quality 

assurance. One interesting observation made by the authors is that it is very difficult to 

institute change and meet existing schedules.  The authors point out that the organizations 

with which an improving organization interacts also need to improve.

Yamamura, G., Wigle, G.B., "SEI CMM Level 5: For the Right Reasons," Crosstalk, Volume 10 

#8 (August 1997), pp. 3-6.

The Boeing Space Transportation Systems (STS) Defense and Space Group's process 

improvement efforts are documented in this article.  What is particularly interesting about 

this article is that the STS had created a CMM Level 5 organization before they adopted the 

CMM; and thus adopted a process based improvement program before they had to.  This 

organization had also been collecting process related data for 15 years.  Documented results 

include defect reduction, increased productivity, cycle time reduction, high product quality, 

excellent performance, high customer satisfaction, satisfied employees.  Of most interest for 

my paper is the fact that the authors document that from employee satisfaction perspective, 

employee satisfaction grew from 74% to 96% because of the improvements.



147

Appendix A: Instructions for Use of The DACS ROI from SPI Spreadsheet Model

A.1 Introduction

Attached to this State of the Art Report (SOAR) is a diskette titled “The DACS Return-

On-Investment (ROI) from Software-Process-Improvement (SPI) Spreadsheet Model.”  This 

diskette contains one Microsoft Excel®, Version 5 spreadsheet titled ROI.XLS.  This appendix 

describes how to use the model to perform your own analysis.  Instructions in Bold type pertain 

to those parts of the spreadsheet that you would change to incorporate your own estimates and 

experience data.  We recommend that you first make a backup copy of this file.  

This spreadsheet can be used for

• Software size estimation

• Software cost estimation

• Return on investment (ROI) estimation from SPI

On opening the spreadsheet from the Excel® application, you will see that this 

spreadsheet has 16 individual sheets:

(1) “WBS” - this sheet is used for defining a Work Breakdown Structure for a project.

(2) “Parameters” - this sheet includes various parameters and tables used for software 

size estimation.

(3) “Camera to Video” - a sample module size estimating spreadsheet.

(4) “Video Enhancement” - another sample size estimation spreadsheet.

(5) “Video Display” - another sample size estimation spreadsheet.

(6) “Sound Enhance” - another sample size estimation spreadsheet.

(7) “UNUSED” - another sample size estimation spreadsheet.

(8) “Summary” - consolidation and summarization of all size estimates.

(9) “COCOMO P’s” - a COCOMO cost and schedule estimation worksheet.

(10) “Schedules” - project schedule worksheet.

(11) “Estimates” - Size, Cost and Schedule summary sheet.



148

(12) “Inspections” - ROI analysis for Fagan Inspections.

(13) “Reuse” - ROI analysis for software reuse.

(14) “Cleanroom” - ROI analysis for Cleanroom development.

(15) “SPI” - ROI analysis for a complete software process improvement program.

(16) “ROI Summaries” - A consolidated view of ROI from SPI.

Sheets (1) through (8) are used for software size estimation.  Sheets (9) through (11) are 

used for cost and schedule estimation.  Sheets (12) through (16) are used to perform return on 

investment analysis.  Although all 16 sheets interact, it is possible to only utilize the size 

estimation, or the cost and schedule estimation, or the ROI estimate portions of the spreadsheets.

As a general reference for any questions about terminology and approach utilized in this 

spreadsheet, please see either Pressman 3or Boehm4.

A.2 Software Size Estimation

Before a cost estimate can be calculated by this spreadsheet, an estimate of the software 

size, in lines of code (LOC), needs to be established.

The first step in this process is to identify the requirements for the system and identify all 

tasks required (both software and non-software related) to develop the system.  The list of 

requirements and tasks should then be hierarchically broken in to a task list, titled a Work 

Breakdown Structure, or WBS.  A sample WBS is provided for a fictitious project in the sheet 

“WBS”.  You can erase all contents in this table and then develop and enter your own 

WBS.  This WBS has 5 columns:

(1) “WBS #” - this column is actually 4 separate spreadsheet columns in which a 

unique number is assigned to each task.

(2) “Task Description” - a description of the task or requirement is identified.

(3) “Source Document Code” - identifies which document contains this requirement.

(4) “Paragraph Number in Source Document” - identifies which paragraph in the 

source document contains the requirement.

                                                
3 Pressman, R., “Software Engineering: A Practitioner’s Approach”, Fourth Edition, McGraw-Hill, 1997
4 Boehm, B., “Software Engineering Economics”, Prentice-Hall, 1981



149

(5) “Comments” - include any comments or notes here for the task.  You may wish to 

identify your assessment of the risks associated with this task.

The next sheet is titled “Parameters,” and contains 5 tables.  You should review and 

modify as appropriate to your organization.  Since most of the factors shown on this sheet 

include industry averages, if you do not have history to suggest otherwise, you should utilize the 

factors provided in Tables 1 through 4.  Table 5 must be updated by the reader for your 

particular project.

(1)  “Table 1 - SLOC Language Conversion Chart” contains some industry standard 

lines of code conversion factors.  If you are translating some software from one 

programming language to another, you can utilize these handy conversion factors 

for estimating new program sizes.

(2) “Table 2 - Memory Requirements and Productivity by Language” will have to be 

estimated by your system engineers.  This table identifies for your processor what 

the average memory requirements are for one line of source code.  This table is 

also where you can indicate your staff’s productivity with each language in SLOC 

per day.

(3) “Table 3 - Equivalent Effort Factor” includes some additional industry standard 

factors for cost estimation.  This shows that if developing code is 1X the effort, 

then reusing code requires 0.3X or 30% the effort and reusing with modifications 

requires 0.6X or 60% the effort.  If your organization’s experience is different, 

you should modify here.

(4) “Table 4 - Allocation of Effort” will be utilized by the COCOMO cost estimation 

spreadsheet and identifies the average amount of total development effort 

dedicated to each phase of the project.

(5) “Table 5 - Product and Component Matrix” is utilized by other sheets and 

identifies the breakdown of your system into major products and components 

within each product.  For each major product of your system, you should enter 

the name of the element, the WBS number that applies, the SOW number 

that applies, and up to 10 component names for each element. This table 

supports up to 5 elements and 10 components per element.



150

The next 5 sheets: “Camera to Video,” “Video Enhancement,” “Video Display,” “Sound 

Enhance,” and “UNUSED” are size estimating sheets containing fictitious but representative 

data.  Each sheet corresponds to each of the major elements identified in Table 5 on the 

“Parameters” sheet.  Each of these 5 sheets is structured identically.  The product name, 

component names, WBS number and SOW number appear automatically.  Each of the 5 sheets 

contains 2 tables and a graph:

(1) Within the “Actual Size Table,” you should enter SLOC estimates for each 

component.  Enter a minimum, maximum and expected SLOC.  Minimums 

and maximums should be selected such that the range, with a 95% probability or a 

3 sigma, covers the actual size of the component.  The spreadsheet then computes 

a “likely” value for that component as (min imum  4 * expected max imum) / 6.  

Estimated memory requirements are computed based on Table 2 of the 

“Parameters” sheet.

(2) In the “Equivalent Size Table,” you divide and enter the SLOC for each 

component into new code, reused code or modified code.  The spreadsheet 

computes equivalent code sizes based on these subdivisions.

(3) A “Reuse Chart” is shown providing an assessment of the amount of reuse being 

accomplished on each product.

The final size estimating sheet, “Summary,” totals and summarizes graphically the size 

estimates for the entire system.

A.3 COCOMO Cost Estimation

The next 3 sheets: “COCOMO P’s,” “Schedules,” and “Estimates” are the sheets used for 

COCOMO cost  and schedule estimation.  This spreadsheet uses an Intermediate COCOMO

model as described in Boehm.  

A.3.1 COCOMO P’s Sheet

“COCOMO P’s,” should be the first sheet you review.  In cell B14, select the 

COCOMO Mode to be used.  The word “Organic”, “Semi-Detached” or “Embedded” 

needs to be entered into this cell based on the type of system you are estimating.

The next fields to be entered in “COCOMO P’s” is under item ii)-e) Effort 

Adjustment Factors.  Under the column “Selected Type”, you enter for each attribute the 



151

strings “VL”, “LOW”, “NOM”, “HIGH”, “VH”, or “EH” for Very Low, Low, Nominal, 

High, Very High or Extra High respectively as the assessment for each attribute.  

COCOMO estimates the effort and schedule associated with design, coding and integration tests.  

It does not account for the cost of requirements analysis, software project management, 

configuration management (CM) and quality assurance (QA).  These factors will have to be 

analyzed and factored in based on your organization’s experience and history.  However, to 

address these factors in this spreadsheet, a labor adjustment for requirements analysis is provided 

in cell B72 (a 20% adjustment is fairly standard in the industry) with the computed value in cell 

C72.  Project management is computed (entered) in cell C91.  CM is computed in cell C98 and 

QA is computed in cell C99 based on % labor adjustments.  Similarly, schedule estimates from 

COCOMO do not estimate schedule lengths.  The COCOMO schedule computation is adjusted 

in cell C130 to account for requirements analysis.

Other factors in “COCOMO P’s” that you should evaluate and adjust include the phase 

distribution of effort, identified in cells D32:D35, and the phase distribution of schedule, in cells 

B121:B124.

A.3.2 Schedules Sheet

Next, the “Schedules” sheet needs to be reviewed and adjusted.  The first step is to 

develop a “Generic Schedule” for the development effort.  In “COCOMO P’s”, cells D136:D141 

provide suggested schedule estimates by phase for your project.  In the Generic Schedule of the 

“Schedules” sheet, you should manually lengthen or shorten the given schedule based on 

the total suggested schedule length.  Within each month of each phase, you should enter a 

typical labor usage profile (percentage) by month.  The total of each row should be 100%.  

The Effort Schedule should be shortened or lengthened to match up with the 

Generic Schedule.  The spreadsheet will then automatically distribute labor staff days into each 

month.  The rows below SUB-TOTAL (ABE) will need to be evaluated for applicability to 

your situation.  In this particular spreadsheet, a development Head Count is computed for each 

month.  Software Project Management is computed based on head count.  QA, CM and 

Documentation are then computed for each month.

The Labor Schedule and Cost Schedule should be shortened or lengthened to match 

up with the Generic Schedule.  The spreadsheet extracts the category names and % effort from 

the “Estimates” sheet and displays them in cells A69:B73.  The spreadsheet then calculates and 



152

distributes the labor across each month for each labor category.  Category names and labor rates 

are extracted from the “Estimates” sheet and entered into cells A81:B85 of the Cost Schedule.  

The spreadsheet calculates and distributes costs across each month.  A grand total cost for the 

project is shown in the bottom cell of the Total column.

A.3.3 Estimates Sheet

The “Estimates” sheet summarizes the findings and analysis of the COCOMO

Spreadsheet.

The Key Parameters and Assumptions table lists key parameters in summarizing findings 

of the COCOMO estimates. Size is extracted from the size estimates sheet.  You enter 

anticipated productivity rate in lines of code per day.  Although productivity is not a 

parameter in COCOMO, you are encouraged to use more than one method to estimate 

costs to establish reasonableness of individual estimates. You should also enter the 

availability of people.  This parameter defines the average number of days per month that 

a person is available, including vacations, holidays, etc.  The COCOMO Mode used in the 

“COCOMO P’s” sheet is displayed.

The Key Values Calculated table computes and displays various cost and schedule 

estimates.  Schedule Length and Adjusted Schedule length are extracted from “COCOMO P’s.”  

The effort required based on the productivity rate entered above is also calculated and can be 

compared with effort estimates from COCOMO, with the intent of making the COCOMO and 

Productivity estimates agree to within 5%.  Total effort and costs are also displayed from the 

“COCOMO P’s” and “Schedules” sheet.

The COCOMO Adjustment Factors you selected are displayed in the COCOMO

Adjustment Factors table.

The Process Distribution by Phase table displays % effort and % actual schedule 

distribution by phase and labor effort days by phase.

You then enter the Labor Distribution by Category Table.  For each job category, a 

category name and a rate per hour (with or without overhead included) is entered.  You 

must also estimate the % of hours, on average, that each category works on the project.  An 

average labor rate is then computed by the spreadsheet.



153

A.4 Return on Investment from Software Process Improvement

The sheets titled “Inspections,” “Reuse,” “Cleanroom,” “SPI”, “ROI Summary”, and 

“Risks” are used to perform ROI analysis.  Since the “ROI Summary” Sheet includes both input 

parameters and summary of results, this sheet is discussed first.  Background for this portion of 

the spreadsheet can be found in the body of this SOAR.  This Section assumes the reader has 

read this SOAR.  No inputs are required for this analysis.  If you’ve completed the spreadsheet 

parts described in Section A.2 and A.3, no new data needs to be entered.

A.4.1 ROI Summary Sheet

Four tables are required to perform the ROI analysis:

(1) The KEY PARAMETERS table is derived from other parts of the spreadsheet and 

from documented values in the open literature.  Project Staff Size is computed by 

the spreadsheet by examining the head counts in the “Schedules” sheet and 

finding the maximum head count in any one month.  Lines of Code is extracted 

from the “Summary” sheet (cell F20).  Average Defects per KSLOC in New 

Code, Average Defects per KSLOC in Reused Code, Average Defects per 

KSLOC in Cleanroom Code, and Software Defect Removal Efficiency are as 

documented in the literature.

(2) The Labor Requirements to Detect Defects Table includes Staff Hours to Resolve 

Design Defects for an average software project, and the multiplier to be applied to 

that value if the defect is to be resolved During Design, During Test or During 

Maintenance.  1X, 10X and 100X respectively are widely recognized multipliers.

(3) The Parameters to Estimate Rework Table describes the relative efficiency of each 

process improvement to detect defects by life cycle phase.  The % Defects 

Removed Before Operational parameter shows industry average efficiencies of 

removing defects prior to release to users.

(4) The COCOMO Parameters from Model Table brings forward the COCOMO

estimating parameters from the COCOMO sheets.

As described in the body of the SOAR (Section 4.4), summary comparisons of different 

process improvement methods are shown in the Method Comparison for Selected Input Values

Table.  Charts comparing development costs and rework costs for each method are shown 

beginning in cell A60 and F60 respectively.



154

A.4.2 Inspections Sheet

Development Effort Reduction for Inspections shows (Cell B2) the documented reduction 

in development labor required if Fagan inspections are followed.

Costs  incurred in implementing Inspections is shown in cells A49:A53, and only 

involves training costs.

A.4.3 Reuse Sheet

The Detailed Breakdown of Rework Table beginning in Cell A22 provides details of the 

rework costs for each level of reuse.  The Formal Inspections New Code column computes 

rework costs for the new code and the Formal Inspections Reused Code column computes 

rework costs for the reused code.  Since reused code exhibits less defects per KSLOC, increased 

levels of reuse reduces rework costs.

A.4.4 Cleanroom Sheet

The tables shown here are explained in the body of this SOAR (Section 3.3.3).  Cell F7 

computes the costs of Cleanroom as a % of total labor requirements.  Cell F12 shows the 

productivity increase achieved by the Cleanroom method.

A.4.5 SPI Sheet

This sheet implements Capers Jones’ models of process improvement as discussed in the 

body of this SOAR (Section 4.1).  

Rows 1 through 115 of this worksheet implement Table 4.2.  Many of the elements in this 

table are computed by looking up values in the Process Improvement Costs per Employee table, 

Improvement Stages in Months table, and the Improvement Parameters table.

(1) The Process Improvement Costs Per Employee table depicts the per employee 

costs at each SPI stage for various size organizations.

(2) The Improvement Stages in Months table shows, for various organization sizes, 

the number of calendar months required for each Stage of improvement.

(3) The Improvement Parameters table shows, for each stage, the % improvement for 

removing defects (reduced rework), the % improvement in productivity (reduced 

development costs), and the % improvement in schedule delivery.



155

Rows 120 to 146 of this sheet implement Table 4.3.  The only user changeable parameter 

is the Programming Language selection in Cell C24.  Selecting the language is through a pull-

down menu selection.  When the language is selected, the LOC/Function Point value displayed is 

the mean value for the selected language from the bottom table of the “Parameters” Sheet.  The 

Total Lines of Code is the “Likely” value from the first table of the “Summary” sheet, and the 

Total Function Points is the total lines of code divided by the LOC/Function Point factor.

A.4.6 Risks

This sheet summarizes all the secondary benefits of software process improvement.  None 

of the tables in this sheet are linked to other portions of the spreadsheet.  Please refer to Section

3.5 of this report for details on each area within this spreadsheet.


