
CSIAC-BCO-2022-233
COMMODITY DEEP
LEARNING TECHNOLOGIES
SUPPORTING AUTONOMY
ON SMALL, INEXPENSIVE
PLATFORMS

By Christiaan Gribble
Contract Number: FA8075-14-D-0001
Published By: CSIAC

SOAR
STATE-OF-THE-ART REPORT (SOAR)
SEPTEMBER 2022

DISTRIBUTION STATEMENT A
Approved for public release. Distribution is unlimited.

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

iii

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

COMMODITY DEEP LEARNING
TECHNOLOGIES SUPPORTING

AUTONOMY ON SMALL,
INEXPENSIVE PLATFORMS

CHRISTIAAN GRIBBLE

SOAR
STATE-OF-THE-ART REPORT (SOAR)
SEPTEMBER 2022

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

iv

The Cybersecurity & Information Systems
Information Analysis Center (CSIAC) is a U.S.
Department of Defense (DoD) IAC sponsored
by the Defense Technical Information Center
(DTIC). CSIAC is operated by SURVICE Engineering
Company under contract FA8075-21-D-0001 and is
one of the three next-generation IACs transforming
the DoD IAC program: CSIAC, Defense Systems
Information Analysis Center (DSIAC), and
Homeland Defense & Security Information
Analysis Center (HDIAC).

CSIAC serves as the U.S. national clearinghouse for
worldwide scientific and technical information in
four technical focus areas: cybersecurity; knowledge
management and information sharing; modeling
and simulation; and software data and analysis.
As such, CSIAC collects, analyzes, synthesizes, and
disseminates related technical information and
data for each of these focus areas. These efforts
facilitate a collaboration between scientists and
engineers in the cybersecurity and information
systems community while promoting improved
productivity by fully leveraging this same
community’s respective knowledge base. CSIAC
also uses information obtained to generate
scientific and technical products, including
databases, technology assessments, training
materials, and various technical reports.

State-of-the-art reports (SOARs)—one of CSIAC’s
information products—provide in-depth analysis of
current technologies, evaluate and synthesize the
latest technical information available, and provide a
comprehensive assessment of technologies related
to CSIAC’s technical focus areas. Specific topic areas
are established from collaboration with the greater
cybersecurity and information systems community
and vetted with DTIC to ensure the value-added
contributions to Warfighter needs.

CSIAC’s mailing address:

CSIAC
4695 Millennium Drive
Belcamp, MD 21017-1505
Telephone: (443) 360-4600

ABOUT CSIAC

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

v

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any
other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE
September 2022

2. REPORT TYPE
State-of-the-Art
Report

3. DATES COVERED

4. TITLE AND SUBTITLE
Commodity Deep Learning Technologies Supporting Autonomy on Small,
Inexpensive Platforms

5a. CONTRACT NUMBER
FA8075-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Christiaan Gribble

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADRESS(ES)
Cybersecurity & Information Systems Information Analysis Center (CSIAC)
SURVICE Engineering Company
4695 Millennium Drive
Belcamp, MD 21017-1505

8. PERFORMING ORGANIZATION REPORT
NUMBER
CSIAC-BCO-2022-233

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Technical Information Center (DTIC)
8725 John J. Kingman Road
Fort Belvoir, VA 22060

10. SPONSOR/MONITOR’S ACRONYM(S)
DTIC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/ AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report reviews state-of-the-art artificial intelligence/machine learning (AI/ML) hardware and software technologies supporting
autonomy on small, inexpensive platforms. It focuses on commodity hardware components and widely available software ecosystems
for deep learning, the subset of AI/ML that uses multilayered neural networks to deliver best-in-class performance and accuracy for the
low-level tasks that drive higher-level applications of autonomy.

15. SUBJECT TERMS
artificial intelligence, machine learning, deep learning, autonomy

16. SECURITY CLASSIFICATION OF:
U

17. LIMITATION
OF ABSTRACT
UU

18.
NUMBER
OF PAGES
42

19a. NAME OF RESPONSIBLE PERSON
Vincent “Ted” Welsh

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

19b. TELEPHONE NUMBER (include area code)
443-360-4600

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

ON THE COVER:
(Source: 123rf.com)

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

vi

CHRISTIAAN GRIBBLE

Christiaan Gribble is currently a principal member
of technical staff, silicon design engineer at
Advanced Micro Devices, Inc. He was previously
the director of high-performance computing
(HPC) and a principal research scientist within
the Applied Technology Operation (ATO) at
SURVICE Engineering Company, where he led
ATO’s HPC-related research and development
initiatives and provided technical oversight for
the embedded systems and software engineering
teams within ATO. His research explores the synthesis
of interactive visualization and HPC. He was also
associate professor in the Department of Computer
Science at Grove City College. Mr. Gribble holds a
Ph.D. in computer science from
the University of Utah.

THE AUTHOR

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

vii

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This report reviews state-of-the-art artificial
intelligence/machine learning (AI/ML) hardware
and software technologies supporting autonomy
on small, inexpensive platforms. It focuses on
commodity hardware components and widely
available software ecosystems for deep learning,
the subset of AI/ML that uses multilayered neural
networks to deliver best-in-class performance
and accuracy for the low-level tasks that drive
higher-level applications of autonomy.

ABSTRACT

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

viii

The author thanks Mr. Mark Butkiewicz (SURVICE
Engineering), Dr. Shawn Recker (LufCo), and
Mr. Jonathan Worobey (Meta Reality Labs Research)
for the many conversations and technical discussions
that contributed to the information presented
in this report. The author also thanks the CSIAC
contributors Mr. Phil Payne and Mr. Ryan Fowler
and the external subject matter expert reviewers
Mr. Marek Ososinski (Tando Ltd.) and Mr. Jonathan
Worobey for their helpful and insightful comments
regarding early drafts of this state-of-the-art report.

ACKNOWLEDGMENTS

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

ix

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

CONTENTS
 ABOUT CSIAC iv

 THE AUTHOR vi

 ABSTRACT vii

 ACKNOWLEDGMENTS viii

SECTION 1 INTRODUCTION 1-1

SECTION 2 BACKGROUND 2-1

SECTION 3 HARDWARE 3-1

3.1 Core Operations 3-1

3.2 Parallel Computing 3-2

3.3 Commodity Hardware Platforms 3-3

3.4 Special-Purpose Hardware 3-4

3.5 Hardware Considerations 3-5

SECTION 4 SOFTWARE 4-1

4.1 Programming Model 4-1

4.2 DL Programming Libraries 4-2

4.3 DL Frameworks 4-3

4.4 Software Considerations 4-6

SECTION 5 APPLICATIONS 5-1

5.1 Autonomous Systems 5-1

5.2 Convolutional Neural Networks 5-1

5.3 Modern Computer Vision 5-3

5.4 Example DoD Use Cases 5-5

5.5 Application Considerations 5-5

SECTION 6 CHALLENGES 6-1

SECTION 7 SUMMARY 7-1

SECTION 8 REFERENCES 8-1

SECTION 9 BIBLIOGRAPHY 9-1

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

x

CONTENTS, continued

 FIGURES

Figure 1-1 DL for Next-Generation Autonomous Platforms 1-1

Figure 1-2 AI, ML, and DL 1-2

Figure 2-1 DL via DNNs 2-1

Figure 2-2 Timeline of AI/ML Developments 2-2

Figure 2-3 Phases of DL 2-3

Figure 3-1 Practical DL via Parallel Computing 3-1

Figure 3-2 Parallelism for Large-Scale Distributed Training 3-3

Figure 3-3 Commodity Hardware for Scalable DL 3-4

Figure 3-4 Special-Purpose Hardware for DL 3-5

Figure 3-5 Possible Tradeoffs When Considering Modern Processors for DL Applications 3-6

Figure 4-1 SIMD Processor Architectures 4-1

Figure 4-2 Hardware-Optimized DL Libraries, APIs, SDKs, and Frameworks 4-3

Figure 5-1 Pooling Layers in a CNN 5-2

Figure 5-2 Image Classification on ImageNet 5-3

Figure 5-3 Example Autonomous System Architecture 5-3

Figure 5-4 Computer Vision Techniques for Machine Perception 5-4

Figure 5-5 SURVICE Engineering’s TRV-150 Tactical Resupply UAS 5-5

1-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 1

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

01
From self-driving cars and warehouse inventory
robots to delivery drones and micro-aerial vehicles
(MAVs) small enough to land on a person’s hand,
autonomous mobile platforms of various scales
are transforming industries across the public and
private sectors. The popular Roborace competition
[1], for example, demonstrates the promise
of artificial intelligence/machine learning (AI/
ML) capabilities in revolutionizing mainstream
pastimes, such as auto racing, while unmanned
aerial systems (UASs), such as the tactical resupply
vehicle (TRV) [2] depicted in Figure 1-1, provide

game-changing capabilities to the Warfighter for
logistics resupply. These platforms are powered
by deep learning (DL), a class of AI/ML algorithms
that solve the representation learning problem by
building complex representations from simpler
concepts [3].

Broadly, AI is a branch of computer science that
seeks to replicate or simulate human intelligence in
a machine. AI systems are powered by algorithms
that exhibit intelligence through decision-making.
ML is a subset of AI and uses statistical techniques

INTRODUCTION

Figure 1-1: DL for Next-Generation Autonomous Platforms (Source: SURVICE Engineering Company).

1-2

State-of-the-A
rt Report: SEC

TIO
N

 1

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

to enable an AI system to learn—the system gets
better at tasks over time, without having to be
specifically programmed to do so. Similarly, DL is a
subset of ML in which learning algorithms attempt
to mimic the human brain using multilayered
algorithmic structures called neural networks. The
relationship between AI, ML, and DL is depicted in
Figure 1-2.

Deep neural networks (DNNs) are one approach
to DL in which a network composed of artificial
neurons takes several inputs and produces an
output. These neurons are grouped together
into layers such that one layer is connected to
both the preceding and subsequent layers.
Flexible DNN architectures enable a diverse range
of applications, from computer vision and speech
recognition to medical imaging and combat
support.

With the mapping of DNNs to modern massively
parallel computing architectures [4], DNNs
now achieve breakthrough performance in
modern computer vision tasks, including image
classification, object detection, and image
segmentation—tasks that form the basis of
autonomous mobile platforms. In fact, DNN
performance in these tasks rivals or even surpasses
human capabilities [5]. The neuron layers, or
convolutional layers, in so-called convolution
neural networks (CNNs) drive performance in these
tasks. The convolutional layers automatically learn
important visual features from vast collections
of training data by optimizing convolutional
operations applied to these data—features that
were previously extracted by complex algorithms
laboriously handcrafted and explicitly programmed
by computer vision experts.

High-performance DNNs, massively parallel
computing architectures, and hardware-optimized
software components now combine with real-
world training data to solve problems in autonomy
for small, inexpensive platforms. This report
reviews state-of-the-art AI/ML hardware and
software technologies supporting autonomy on
these platforms, focusing on commodity hardware
components and widely available software
ecosystems for DL. Together, these technologies
deliver best-in-class performance and accuracy
for the low-level tasks that drive higher-level
applications of autonomy.

Figure 1-2: AI, ML, and DL (Source: SURVICE Engineering Company).

ARTIFICIAL
INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE
LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning
in which multilayered neural

networks learn from vast
amounts of data

2-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 2

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

02
DL is a class of AI/ML that uses DNNs, or
multilayered artificial neural networks (ANNs), to
deliver state-of-the-art performance in complex
tasks, such as image classification and speech
recognition, among others.

ANNs are statistical models that adapt (via self-
programming) by using learning algorithms
to build complex representations from simpler
concepts. These networks date back to the early
1940s, when mathematicians McCulloch and Pitts
built a simple algorithm-based system to emulate
human brain function [6]. They used a combination
of mathematics and algorithms, or what they
called “threshold logic units,” to encode logical
propositions.

As depicted in Figure 2-1, modern ANNs are
composed of artificial neurons, or nodes, arranged
in several layers that operate in parallel. Each
neuron has one or more inputs and produces a
single output, which is then forwarded to one or
more nodes in the next layer. The input layer is
analogous to dendrites in the human brain. The
hidden layer, comparable to the cell body, sits
between the input layer and the output layer, which
itself is analogous to synaptic outputs in the human
brain. The hidden layer ingests inputs based on
synaptic weight, the amplitude or strength of a
connection between nodes. These weighted inputs
generate an output through a transfer or activation
function to the output layer.

In 1958, Rosenblatt introduced the perceptron—
a groundbreaking algorithm designed to perform

BACKGROUND

Figure 2-1: DL via DNNs (Source: NVIDIA and SURVICE Engineering).

In
pu

ts
 (D

en
dr

it
es

)

Activation
Function

Artificial Neuron

Cell
Body Output

I1

I3

I2

I4

Dendrites

Synapse

Cell Body

Axon

Human Brain Neuron

2-2

State-of-the-A
rt Report: SEC

TIO
N

 2

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

complex recognition tasks [7]. The perceptron
was designed for image recognition, and,
though originally conceived as machine, the first
implementation was a software program. Initially
promising, practitioners quickly proved that
perceptrons could not be trained to recognize
many pattern classes. Nevertheless, mathematical
and algorithmic progress continued throughout
the 1960s, 70s, and 80s, with notable advances,
including development of the basis of back
propagation [8, 9], polynomial activation [10], the
first “convolutional” neural network [11], and the
first practical demonstration of back propagation
[12]. However, throughout this time, lack of
computing power sufficient to process large
amounts of data hindered application of these
developments in practical settings.

Not until the 2000s, when massively parallel
computing hardware and large repositories of
real-world training data became commonplace, did
practitioners have the necessary components to
realize practical applications. In fact, by 2011,

modern graphics processing units (GPUs) offering
hundreds or even thousands of processing
elements made it possible to train CNNs without
tedious layer-by-layer pretraining [13]. With
increased computing power, the significant
advantages of DL in terms of speed and efficiency
became obvious. The timeline of historical AI/ML
developments is summarized in Figure 2-2.

Unlike traditional AI/ML techniques, DL
automatically learns representations from data
(images, video, text, etc.) and does not require
explicitly programmed rules or significant domain
knowledge from human experts. Instead, DNN
models learn directly from real-world data in a
process called training—the first of two phases
necessary to utilize DL models. The second phase,
called inference, is the use of a trained DNN model
to make predictions against previously unseen
data. These phases are depicted in Figure 2-3.
Loosely speaking, research demonstrates that more
training data leads to lower estimation variance
and, thus, better predictive performance; that is,

Figure 2-2: Timeline of AI/ML Developments (Source: NVIDIA).

2-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 2

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

more data increases the probability that the DNN
encounters useful information during training,
which can be advantageous for inference [14].

With hardware-accelerated DL frameworks,
the time required to train DL models is reduced
from days or weeks to just hours or days. When
these trained models are ready for deployment,
hardware-accelerated inference platforms (from
the smallest embedded systems and mobile
devices to desktop personal computers [PCs],
workstations, and the cloud) deliver high-
performance, low-latency inference for the most
computationally intensive DNNs across all scales.

AlexNet [4], a CNN architecture that won several
international computer vision competitions during
2011 and 2012, is the most well-known example
of the impact massively parallel computing
architectures (modern GPUs, in particular) have
had on ML with DNNs. The depth of AlexNet (i.e.,
the number of convolutional layers) was certainly
critical to its record-breaking performance in these
competitions. However, because deeper networks
impose more computation, training AlexNet only
became feasible with the use of contemporary
GPUs [15].

In particular, the AlexNet architecture consists of
five convolutional layers and three fully connected
layers. However, depth alone is not the only novel
aspect of AlexNet; additional breakthrough
features include:

• Rectified Linear Units (ReLU) Nonlinearity.
AlexNet uses ReLU instead of the sigmoid or
hyperbolic tangent (tanh) functions, which
were standard at the time. ReLU was first
shown to enable training supervised DNNs
in 2011 [16], and it allows fast and effective
training of DNN architectures on large,
complex datasets.

• Multiple GPUs. AlexNet allows parallel
training by distributing the model across two
GPUs, or so-called model-parallel training.
Parallel training increases the size of models
that can be trained and reduces the time
required to train any particular model.

• Overlapping Pooling. Prior to AlexNet,
typical CNNs pooled outputs of neighboring
neuron groups without overlapping. However,
by introducing overlapped pooling, AlexNet
reduced both top-1 and top-5 error rates [17].

Figure 2-3: Phases of DL (Left: DNN Training; Right: DNN Inference) (Source: NVIDIA).

2-4

State-of-the-A
rt Report: SEC

TIO
N

 2

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

AlexNet is a large model with 60 million parameters
and 650,000 neurons, which increases the model’s
capacity to learn critical features for the task at
hand. However, training a large model can also
lead to overfitting—a problem in which the model
effectively memorizes features in training samples
and is unable to generalize these features to
new, previously unseen data. AlexNet combats
overfitting using the following:

• Data Augmentation. Label-preserving
transformations introduced additional variation
in the training data. Specifically, the number of
training samples was increased by more than
2000x using image translations and (horizontal)
reflections, and image channel intensities were
modified using principal component analysis to
create more training data.

• Dropout. Here, neurons are disabled with
a predetermined probability so that every
iteration uses a different subset of the model’s
parameters. Dropout is just one approach
to regularization—any method or process
designed to prevent overfitting by reducing
interdependent learning among neurons.
Dropout increases the training time required
for convergence but forces neurons to learn
features more robustly.

AlexNet achieved a top-5 error of 15.3% in the 2012
ImageNet Large Scale Visual Recognition Challenge
[18], or nearly 11 percentage points better than its
closest competitor. With the success of AlexNet,
the practical application of DL began in earnest.

Later, Google DeepMind’s AlphaGo became the
first computer program to defeat a professional
human Go player and the first to defeat a Go world
champion [19]. AlphaGo combines advanced tree
search with DNNs. One neural network (the policy
network) selects the next move to play, and a

second neural network (the value network) predicts
the winner of the game. AlphaGo was first exposed
to amateur Go games to develop an understanding
of reasonable human play, followed by play
against different versions of itself thousands of
times—each time learning from its mistakes. This
process, known as reinforcement learning, rewards
desired behaviors, punishes undesired ones, or
both. In general, a reinforcement learning agent
(in this case, the AlphaGo program) perceives
and interprets its environment, acts with that
environment, and learns through trial and error.
AlphaGo eventually defeated Go world champions
in different global arenas and has arguably become
the greatest Go player of all time.

DNNs have found similar success in natural
language processing (NLP), or algorithms that
represent and analyze human language. NLP-
based systems enable a wide range of applications,
including virtual-assistant technologies, machine
translation, dialogue generation, and others.
Much like computer vision, NLP techniques were
traditionally based on shallow ML models and
time-consuming, hand-crafted features. More
recently, however, DNNs have achieved superior
results on various language-related tasks compared
to traditional ML models. For example, early work
by Collobert et al. [20] demonstrated a simple DL
framework that outperformed most contemporary
state-of-the-art approaches in several NLP tasks,
and numerous algorithms based on DL have been
proposed to solve difficult NLP tasks since then [21].

DL finds successful application across a wide range
of other domains, including medical image analysis
[22], wireless communication [23], robotics [24], and
more [25, 26]. Interested readers are encouraged
to consult the many available resources to learn
more about the application of DNNs to problems in
science, engineering, and medicine.

3-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 3

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

03
Widely available massively parallel computing
architectures have revolutionized DL, making it
practical to apply complex DNN models to real-world
problems. For example, consider DNN training, as
outlined in Figure 3-1. The DNN ingests data at its
input layer, multiplies these inputs by the synaptic
weights (or more simply, weights) in its hidden
layers, and then outputs a prediction. Weights are
adjusted throughout training to extract meaningful
patterns and thus make better predictions.

3.1 CORE OPERATIONS

Typically, the goal of training is to reduce prediction
error or loss—the difference between predicted
outputs and reference data. Reference data

is constant; therefore, training must change
prediction values by updating synaptic weights
to reduce error.

Backpropagation is a commonly used mechanism
to update weights via gradient descent—an
iterative first-order optimization algorithm that
finds a local minimum or maximum value of a
function. In training, backpropagation computes
the gradient of the loss function with respect
to each weight one layer at a time and iterates
backward from the last layer to avoid redundant
calculation of intermediate terms. This approach
makes the application of gradient methods feasible
for training deep multilayer neural networks.

HARDWARE

Figure 3-1: Practical DL via Parallel Computing (Source: NVIDIA).

3-2

State-of-the-A
rt Report: SEC

TIO
N

 3

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Backpropagation refers only to the algorithm for
computing gradients, not how the gradient is used;
however, the term is often used loosely to refer to
the entire learning algorithm. Backpropagation
generalizes the gradient computation in the
delta rule—the gradient descent learning rule
for updating weights in a single-layer version of
backpropagation. It is, in turn, generalized by
automatic differentiation—a set of techniques for
evaluating the derivative of a function. Interested
readers are encouraged to consult the many
available resources to learn more about DNN
training; for example, Goodfellow et al. [3] provide
a modern overview of backpropagation and
differentiation algorithms in DL.

DNN inference, also outlined in Figure 2-3, proceeds
in much the same way—the network ingests data
at its input layer, multiplies these inputs by its
weights, and then outputs a prediction. In contrast
to the training phase, however, DNN weights are
not adjusted during inference and instead use the
values determined by training and are fixed at
the time of deployment.

In both phases, the core operation is tensor
multiplication. Generally, tensors are mathematical
objects that describe relationships between other
mathematical objects that are themselves linked in
some way. In DNN training and inference, tensors
are simply two-dimensional matrices, so tensor
multiplication is essentially matrix multiplication—
an array of inputs multiplied by an array of weights.
Modern DNN models comprise potentially billions
of such weights, however, so computations for even
a single training iteration could require hours, days,
or even weeks.

3.2 PARALLEL COMPUTING

Fortunately, massively parallel architectures
execute multiple, simultaneous computations
across tens, hundreds, or even thousands of
processing cores, each of which uses fewer
resources than a more traditional central
processing unit (CPU). These architectures
implement parallel computing—an approach

in which a complex task (e.g., DNN training) is
divided into smaller, independent computations
that can be executed simultaneously. The results
of these independent computations are then
combined to form the result of the original task.
The number of computations into which a task
is divided depends, in part, on the number of
available processing cores. Typical CPUs have
4, 8, or 16 cores, while GPUs have hundreds or
thousands.

In fact, DL tasks are embarrassingly parallel,
meaning little or no effort is necessary to divide
a task into smaller, independent computations.
Recall that, during both training and inference,
a DNN ingests data at its input layer, multiplies
these inputs by weights in its hidden layers, and
outputs a prediction. Here, the most common
functions are basic linear algebra operations, such
as matrix multiplication and addition. At the same
time, computations for each node in a layer are
independent of every other node in that layer;
therefore, these computations can be executed
simultaneously. Massively parallel computing
architectures are thus well matched to both
training and inference.

Modern GPUs are the most prevalent massively
parallel computing architectures at present. GPUs
are specialized processors with dedicated memory
originally designed to accelerate the operations
required for graphics rendering—the process
of generating images from three-dimensional
models or scene descriptions via a computer.
Rendering is itself an embarrassingly parallel
problem; consequently, GPUs have evolved
to execute hundreds or thousands of these
operations in parallel to support increasingly faster
rendering times. Moreover, GPUs began to expose
programmable elements in their otherwise fixed-
function rendering pipelines, giving software
developers low-level control over many aspects
of computation. Together, these GPU features
(unprecedented levels of parallel hardware under
explicit programmer control) paved the way for
accelerated DL, as demonstrated by AlexNet.

3-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 3

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Although not the first CNN to exploit GPUs for
accelerated DL, AlexNet is often seen as the catalyst
behind the GPU-accelerated DL revolution [15].

The parallelism inherent to DNN training extends to
even larger scales via distributed training, wherein
either computation or data is distributed across
many independent processors (e.g., multiple CPUs
in a cluster or multiple GPUs in a workstation). As
illustrated in Figure 3-2, distributed training usually
proceeds in one of two ways: model parallel or data
parallel.

In model-parallel training, each layer’s parameters
and the corresponding computations in the DNN
(i.e., the model itself) are distributed across the
processors, and each one ingests the same
data. With data-parallel training, training data
is distributed across the processors and each
one executes the entire DNN model on its data
subset. Model-parallel training permits DNNs with
increasingly more parameters to improve model
performance, while data-parallel training permits
training with progressively more data to complete
within practical timeframes. Distributed training is
thus essential to robust, large-scale DL solutions.

3.3 COMMODITY HARDWARE PLATFORMS

Major processor manufacturers, including AMD,
ARM, Intel, and NVIDIA, offer scalable, accelerated
solutions for DL training, typically comprising
their respective processor technologies and a DL
software stack optimized for that platform. From
multi-GPU workstations to purpose-built DL
systems of various scales, these products (as well
as those offered by top cloud service providers,
original equipment manufacturer partners, and
various resellers) provide easy access to the
latest massively parallel computing architectures
that enable fast, efficient, and economical DNN
design, training, and optimization. Some of these
commodity hardware platforms are depicted in
Figure 3-3.

Whereas these platforms are typically designed
for DL training in the laboratory, in the data center,
or in the cloud, other platforms are designed for DL
inference in the field. For example, NVIDIA Jetson is
a DL platform designed for autonomous machines
and other in-situ applications running at the edge.
The Jetson platform includes Jetson modules
(small, low size, weight, and power [SwaP] and

Figure 3-2: Parallelism for Large-Scale Distributed Training (Left: Model Parallelism; Right: Data Parallelism) (Source: Jordi Torres).

Layer 1

Layer 3 Layer 4

Layer 5

Layer 2

Layer 6

G
PU

 0
G

PU
 3

G
PU

 2

G
PU

 1

MODEL PARALLELISM

Layer 1

Layer 5

Layer 2

Layer 6

Layer 3 Layer 4

G
PU

 2

Layer 1

Layer 5

Layer 2

Layer 6

Layer 3 Layer 4

G
PU

 3

Layer 1

Layer 5

Layer 2

Layer 6

Layer 3 Layer 4

G
PU

 0

Layer 1

Layer 5

Layer 2

Layer 6

Layer 3 Layer 4

G
PU

 1

DATA PARALLELISM

3-4

State-of-the-A
rt Report: SEC

TIO
N

 3

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

high-performance system-on-module computers,
complete with a CPU, GPU, memory, power
management, and high-speed input/output
[I/O] interfaces); the NVIDIA JetPack software
development kit (SDK); and an entire ecosystem of
compatible sensors, SDKs, services, and products
to support application development. Jetson also
executes the same DL software and workflows used
across other NVIDIA DL platforms, which enables
these applications to scale up or down as required
by deployment targets. Together, these features
make NVIDIA Jetson an ideal and unique platform
for low-cost, low-SwaP, and high-performance
DL inference on next-generation autonomous
machines.

3.4 SPECIAL-PURPOSE HARDWARE

Just as GPUs originally evolved to enable fast
rendering times with specialized hardware
designed for rendering operations, these
architectures are now evolving to enable
increasingly faster DNN training and inference
operations with specialized hardware. For example,
the recently announced NVIDIA Hopper GPU
architecture includes NVIDIA’s latest Tensor Cores—
special-purpose hardware designed to accelerate
the tensor operations underlying DNN training
and inference. The AMD CDNA2 GPU architecture

includes similarly special-purpose hardware called
Matrix Cores. These specialized compute units
provide high-performance reduced- and mixed-
precision operations, while direct support in native
DL software frameworks via hardware-optimized
libraries provides automatic implementation,
reduces training times, and maintains accuracy.
These same features (high-performance reduced-
and mixed-precision operations and direct
support in native DL software frameworks) provide
low latency at high throughput and maximize
utilization to deploy inference reliably across scales.

Whereas NVIDIA Tensor Cores and AMD Matrix
Cores are specialized GPU components designed
to accelerate core DL operations, the Google
Tensor Processing Unit (TPU) and Intel Neural
Compute Stick 2 (NCS2) are entire devices designed
to accelerate DNN operations. The Google TPU,
introduced in 2016, is a custom, application-specific
integrated circuit built specifically for ML and
tailored for the Google TensorFlow ML software
platform. Google TPUs are available commercially
via Google Cloud, where they can be connected
to virtual machines and mixed with other types
of hardware for DNN training. Likewise, the Intel
NCS2 is a dedicated hardware accelerator for DNN
inference. Packaged as a plug-and-play Universal
Serial Bus thumb stick, this special-purpose
device exploits Intel’s Neural Compute Engine
and 16 programmable cores to accelerate DNN
inference. These devices are depicted in Figure 3-4.
Unlike GPUs, which support compute-intensive
applications beyond DL, these purpose-built
devices are specifically designed to accelerate
DNN operations and are not intended to support
applications in other domains.

Similarly, vision processing units (VPUs) are a
type of system-on-chip designed to acquire and
process visual data. VPUs typically target mobile
applications and are optimized for small size and
power efficiency. For example, Intel’s Movidius
Myriad X VPU [27] can interface with an image
sensor, preprocess captured image data, and pass
results through a pretrained DNN to compute

Figure 3-3: Commodity Hardware for Scalable DL (Source: NVIDIA).

3-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 3

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

predictions, all in a low-cost, low-SwaP design that
balances computational performance and power
efficiency.

Typical VPUs are not specifically designed for DNN
operations; however, these processors excel at
convolutions and other parallel operations due
to single-instruction, multiple-data (SIMD) vector
units. Intel’s VPUs, for example, combine traditional
CPU cores and SIMD units to accelerate the highly
branching logic typical of DNNs and other
computer vision algorithms.

Moreover, power-efficient designs make VPUs
particularly well suited for embedded applications,
such as those running on handheld or mobile
devices that require long battery life. Though
less powerful than GPUs, VPUs are quite small; for
example, Teledyne FLIR’s Firefly DL camera [28]
offers on-camera, DNN-based decision-making

without a host computer system, and it is designed
specifically for low-SwaP-embedded applications,
including mobile platforms.

Field-programmable gate arrays (FPGAs) offer
an interesting middle ground between fully
programmable processors and purpose-built,
application-specific devices. An FPGA is a hardware
circuit with reprogrammable logic gates that
enables users to create or program a custom circuit
while the chip is deployed, not just during the
design or fabrication phases. This programmability
contrasts with standard processors in which circuits
are hard wired and cannot be reprogrammed.
FPGAs with thousands of memory units enable
circuits to implement a massively parallel
computing model, much like GPUs. Moreover,
FPGAs are particularly well suited for embedded
applications due to lower power requirements than
either CPUs or GPUs.

Programming FPGA circuits typically requires
significant expertise, however, and though
some work has been done in this area (e.g., the
DL Accelerator Unit [29]), implementing FPGAs for
practical DL applications is relatively untested. Lack
of support and minimal community knowledge
also suggest that FPGAs are not yet widely
accessible as a commodity DL technology.

3.5 HARDWARE CONSIDERATIONS

Modern CPUs, GPUs, DL-specific devices, VPUs,
and even FPGAs form the foundation for high-
performance DL applications. These processors
execute and accelerate the core operations
required to design, train, and deploy complex DNN
models, typically through widely accessible DL
software stacks featuring platform-specific libraries,
flexible application programming interfaces (APIs),
and end-to-end frameworks optimized for the
underlying hardware architecture.

Each of these architectures offers certain advantages
and suffers from certain disadvantages; therefore,
hardware selection is a key consideration in

Figure 3-4: Special-Purpose Hardware for DL (Top: Google TPU;
Bottom: Intel’s NCS2) (Source: Google and Intel).

3-6

State-of-the-A
rt Report: SEC

TIO
N

 3

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

planning an end-to-end DL system. Potentially,
significant differences in architecture between
CPUs, GPUs, VPUs, and FPGAs make performance
comparisons in terms of floating-point operations
per second of little practical value, however.
Comparing published inference time is a useful
starting point, but inference time alone may
be misleading. For example, processor A may
process a single frame faster than processor B,
but processor B could process multiple frames in
parallel and yield greater throughput. As outlined
in Figure 3-5, other considerations, including, cost,
power consumption, physical size, and software
support, may be a factor as well.

Testing is the only sure-fire method for comparing
available architectures. Prior to selecting the
hardware for a DL-enabled system, practitioners
should conduct various tests to determine the
accuracy, performance, and efficiency requirements
necessary to satisfy application constraints. These
parameters will determine the characteristics of the
DL hardware onto which the required DNN can be
successfully deployed.

The specific hardware components highlighted
in this report represent only a small subset of the
current hardware technologies supporting DL
applications. Interested readers are encouraged
to consult the many available resources to learn
more about these and other hardware technologies
enabling modern, high-performance DL.

Figure 3-5: Possible Tradeoffs When Considering Modern Processors
for DL Applications (Source: SURVICE Engineering Company).

Ecosystem

Small Size

Low Power
Consumption

Low Cost

Computing
Power

VPU FPGA GPU

4-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 4

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

04
Massively parallel computing architectures provide
significant performance gains when algorithms are
designed to fully exploit their underlying hardware
configuration. While several implementations
of these architectures are available, many share
a common computational model: data-level
parallelism. The SIMD model is one approach to
data-level parallelism in which a single instruction
stream executes across multiple data streams
simultaneously. To exploit the benefits of data-level
parallelism, programmers must understand and
use these SIMD units carefully and correctly, which
is often a difficult and time-consuming task.

4.1 PROGRAMMING MODEL

As illustrated in Figure 4-1, SIMD architectures
impose the constraint that all SIMD units
associated with a single control unit execute the
same instruction across a group of data elements.
Most available SIMD architectures support wide

memory-fetch operations that fill an entire SIMD
vector unit in a single fetch. These memory
operations take several orders of magnitude longer
to execute than a SIMD arithmetic operation;
therefore, arranging data elements in a manner
that minimizes memory fetches per arithmetic
operation in turn maximizes computational
throughput, leading to higher performing code.
The parallel programming models for SIMD units
underlying modern processor architectures thus
dictate that computations be arranged differently
than with traditional programming models.

Nearly all computing devices (from traditional
workstation- and desktop-class computers to
low-power tablets, smartphones, and other
embedded systems) now include some form of
SIMD unit. Although not specifically designed
for DNN operations, these units accelerate the
highly parallel algorithms supporting modern DL
techniques, and thus form the basis of low-cost,

SOFTWARE

Figure 4-1: SIMD Processor Architectures (Source: SURVICE Engineering Company).

MEMORY

Processing
Core

Processing
Core

Processing
Core

Processing
Core

Processing
Core

Processing
CoreINSTRUCTIONS

4-2

State-of-the-A
rt Report: SEC

TIO
N

 4

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

low-SwaP hardware architectures supporting
applications in edge computing, including
autonomous platforms.

Despite the ubiquitous nature of these units, SIMD
processors require algorithms and data structures
radically different from those used in traditional
software [30, 31], making it difficult for existing
approaches to realize the performance promised by
massively parallel computing. As a result, software
applications across many domains do not leverage
SIMD units effectively, due in part to the challenges
of developing efficient algorithms for these
processors. However, with careful consideration of
the low-level architectural features, the SIMD units
of modern processors offer potentially significant
increases in runtime performance across the full
range of computing platforms.

Modern parallel programming paradigms and
compiler technologies help to address some
difficulties imposed by massively parallel
computing architectures. For example, NVIDIA’s
Compute Unified Device Architecture (CUDA)
or Intel’s Single Program, Multiple Data (SPMD)
Program compiler (ispc) offer variants of the C/
C++ programming language with extensions
for SPMD programming. In this model, a parallel
program appears to be a regular serial program;
however, the compiler and language runtime
implement an execution model that runs several
program instances in parallel on the underlying
SIMD hardware. When implemented correctly,
SPMD programs frequently achieve performance
improvements of about 2×–16× on modern CPUs
and 10×–100× on modern GPUs—all without
the difficulty of code using SIMD intrinsics. These
programming tools also support parallelization
across the full range of processor architectures so
that programs achieve performance portability
by scaling with both core count and SIMD unit
width—all without device-specific code paths.

Rarely are practitioners required to develop DL
applications for massively parallel computing
architectures at this low level, however. Instead,
popular DL libraries, APIs, SDKs, software

frameworks, and product ecosystems leverage
these technologies to exploit the computational
power afforded by modern massively parallel
computing architectures and expose DL functionality
and workflows (from core operations to end-to-end
DL solutions) to increase productivity, promote
flexibility, and realize scalability for modern DL
applications.

4.2 DL PROGRAMMING LIBRARIES

Processor manufacturers offer several hardware-
optimized software libraries for applications
requiring highly customized DL components, as
highlighted in Figure 4-2. For example, NVIDIA
CUDA-X provides core libraries delivering high
performance for customized DL applications
across various deployment targets (from
resource-constrained embedded devices to big
iron machines in high-performance computing
[HPC] centers). CUDA-X includes highly optimized
libraries for common math, communication, and DL
tasks, including GPU-accelerated DNN primitives
(cuDNN), high-performance inference (TensorRT),
and real-time streaming analytics and multisensor
processing (DeepStream SDK), among others. The
CUDA-X libraries are themselves implemented
using CUDA and exploit the specialized hardware
components of NVIDIA GPUs, including NVIDIA
Tensor Cores.

Similarly, AMD offers ROCm—an open software
platform that enables developers to execute
applications on CPUs, GPUs, or both. ROCm
supports a broad range of both AMD and non-AMD
GPUs and is open to enable support for third-
party GPU and FPGA devices. Moreover, ROCm
encourages a write-once, run-anywhere (WORA)
development model, allowing developers to write,
test, and debug software applications in a device-
independent manner. These applications can
then be deployed across all supported systems
at all supported scales. Similar to CUDA-X, ROCm
includes highly optimized libraries for common
math, communication, and DL tasks, including
accelerated DNN primitives (MIOpen) and the
OpenVX computer vision API (MIVisionX), among

4-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 4

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

others. Where possible, these libraries exploit the
specialized hardware components of AMD GPUs,
including AMD Matrix Cores.

Intel offers the oneAPI DL Framework Developer
Toolkit (DLFD Kit)—a suite of libraries for building
and optimizing DL applications targeting Intel
CPUs, GPUs, or FPGAs. The DLFD Kit includes the
oneAPI DNN Library (oneDNN) and the oneAPI
Collective Communications Library (oneCCL).
oneDNN enables developers to create fast
DNNs using performance-optimized building
blocks and improves programmer productivity
by exposing the same API across deployment
targets. oneCCL enables developers to train larger
and deeper DNN models more quickly using
optimized communication patterns to distribute
training across multiple nodes. It is implemented
using lower-level communication middleware,
including the Message Passing Interface (MPI),
to support several different distributed-system
interconnects, including InfiniBand and Ethernet.
The DLFD Kit is part of Intel’s oneAPI initiative—an
open, cross-industry, standards-based, unified,
multiarchitecture, multivendor programming

model that delivers a common developer
experience across accelerator architectures [32].

4.3 DL FRAMEWORKS

Whereas these library collections provide low-level
control for highly customized DL application
development, processor manufacturers also
provide higher-level frameworks that simplify
common DL tasks, including DNN model
development, training, and inference. For
example, the NVIDIA Train, Adapt, and Optimize
(TAO) Toolkit implements transfer learning—a
training approach in which features learned by an
existing model are extracted or transferred to a
new model. Transfer learning is particularly useful
when training data for a new application domain is
scarce or insufficient but a large pool of data exists
for a similar domain. For example, developers can
refine an existing object detection model trained
with electro-optical (EO) imagery using limited
quantities of infrared (IR) training data to detect
objects of interest in IR imagery. NVIDIA TAO hides
the underlying complexity of transfer learning
by exploiting NVIDIA’s pretrained DNN models,

Figure 4-2: Hardware-Optimized DL Libraries, APIs, SDKs, and Frameworks (Source: NVIDIA).

4-4

State-of-the-A
rt Report: SEC

TIO
N

 4

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

enabling practitioners to fine-tune these models for
new domains with significantly less training data
compared to training a DNN model from scratch.

The NVIDIA DL GPU Training System (DIGITS)
is another high-level framework that hides the
underlying complexity of DNN model development
and training, specifically for computer vision tasks,
such as image classification, object detection,
and image segmentation. DIGITS streamlines
data management, performance monitoring,
and results visualization, and even scales
training across multi-GPU systems in an interactive,
browser-based graphical user interface (GUI).
With DIGITS, practitioners focus on designing and
training effective DNNs rather than programming
and debugging.

The Intel oneAPI AI Analytics Toolkit (AI Kit) similarly
streamlines DL tasks for applications running
on Intel processors. AI Kit components are
implemented using oneAPI libraries, including
oneDNN, to exploit low-level hardware features
for optimal performance. Similar to NVIDIA TAO,
Intel AI Kit provides access to pretrained models
that have been optimized for Intel processors,
and, once again, enables practitioners to focus on
designing and training effective DNNs (here using
a scriptable Python interface) rather than low-level
programming and debugging.

Efficient DNN model training and DL application
development workflows are critical to any
DL solution’s long-term performance and
maintainability. NVIDIA TAO, NVIDIA Digits,
and Intel AI Kit provide hardware-optimized
components and streamlined workflows for model
training and application development. However,
DL inference performance is as important, perhaps
even more important, particularly for deployments
targeting autonomous mobile platforms. In these
scenarios, split-second decisions based not only
on accurate, correct, and robust DNN predictions
but also fast predictions can mean the difference
between mission success and mission failure.

Recall that during both training and inference,
DNNs ingest data at their input layers, multiply
these inputs by synaptic weights in their hidden
layers, and finally output predictions. Whereas
DNN weights are updated to reflect and improve
prediction accuracy during training, these weights
are not adjusted during inference and are instead
fixed at the time of deployment. In this case, the
simplest inference methods simply execute the
DNN model in framework but disable synaptic
weight updates.

This approach is far from optimal, however,
particularly for real-time, latency-sensitive
production deployments on small, inexpensive
autonomous platforms. In this context, approaches
in which DNN computations are offloaded to the
cloud attempt to address both latency and energy
consumption—cloud-based processing potentially
provides sufficient computation and storage
resources for DNN operations, anytime and
anywhere [33]. These approaches trade onboard
processing latency and energy requirements
for latency in data transfer and communications
bandwidth; however, potentially significant
amounts of data must be transferred to the
cloud over wireless networks, typically over
long distances.

To reduce total latency, data transfer latency
must also be reduced. Computation and storage
resources could be deployed at the edge of
mobile network, as in so-called edge clouds (e.g.,
cloud-based resources integrated in network base
stations) [34]. Resources in edge clouds are still
limited, but model-parallel inference suggests
partial offloading as a viable alternative. In this
case, mobile devices process subsets of DNN layers
using a combination of onboard and edge-cloud
resources [35].

Even so, an autonomous platform’s mobility will
itself impose challenges for continuity of service
in any cloud-based processing infrastructure,
edge-based or otherwise [36]. For example,

4-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 4

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

frequent connection failures seriously affect the
edge devices’ quality of service (QoS); therefore,
mobile scenarios require stable partition offloading
schemes to ensure service continuity [37], which
is itself a difficult problem and an area of active
research.

Ideally, real-time, latency-sensitive production
deployments on autonomous platforms would
execute standalone, optimized DNN inference.
Toward this end, processor manufacturers provide
tools to minimize resource demands and maximize
inference performance in these scenarios.

NVIDIA TensorRT is an SDK for high-performance
DL inference that includes an inference optimizer
and runtime designed to optimize trained
models for the highest throughput and lowest
latency while maintaining prediction accuracy.
Optimizations include model quantization, layer
and tensor fusion, optimized kernel selection,
and multistream execution, among others. These
optimizations improve latency, throughput, and
runtime efficiency across NVIDIA GPU architectures,
application-specific SDKs, and DL problem
domains.

TensorRT is part of NVIDIA’s DL Inference Platform,
which combines the specialized hardware features
of its GPU architectures with an optimized end-to-
end DL software stack for easy model deployment
across application domains. The inference platform
also includes NVIDIA Triton Inference Server—an
open-source software platform designed to
simplify production DNN model deployment.
Using NVIDIA Triton Inference Server, practitioners
can deploy models trained using popular DL
frameworks from local storage or the cloud to
any CPU- or GPU-based infrastructure, including
autonomous mobile platforms.

Similarly, Intel’s distribution of the OpenVINO
toolkit provides a comprehensive, open-source
solution for optimizing and deploying DL
inference across domains, including computer
vision. Using OpenVINO, practitioners can again

deploy models trained with popular frameworks
that have been optimized to reduce resource
demands and increase efficiency across Intel CPUs,
GPUs, and computer vision accelerators. DNN
models optimized with OpenVINO thus maximize
inference performance for deployment targets
ranging from tablets, smartphones, and
embedded processors at the edge to desktop
PCs, high-performance workstations, and enterprise
servers in large data centers and the cloud.

Other DL frameworks also use hardware-
accelerated libraries and APIs to deliver scalable,
high-performance DNN model development,
training, and deployment. For example, TensorFlow
is an end-to-end, open-source ML platform created
by Google and popular among DL practitioners,
especially for DNN training. A flexible collection of
tools and libraries, as well as extensive community
resources, support model development, training,
and deployment across hardware targets, including
Google TPU and at-the-edge or embedded processors.
In fact, TensorFlow includes TensorFlow Lite—a
library supporting model deployment on mobile
platforms and edge devices. The TensorFlow API
targets Python but also provides limited support for
APIs in C/C++, Java, and several other languages.
Only the Python API is guaranteed to be stable,
however [38]. Beyond extensive language support,
a wide range of libraries, extensions, models,
datasets, and tools that integrate with or are built
on top of TensorFlow support and accelerate
common DL tasks and workflows.

PyTorch is also an open-source ML framework
supporting DL application design, training, and
deployment. Created by Facebook’s AI Research
Lab, PyTorch is focused largely on computer vision
and NLP tasks. Similar to TensorFlow, the primary
PyTorch API is Python (with limited support for
C++), and several other libraries and tools integrate
with PyTorch as well. Although PyTorch has
experimental (beta) support for mobile devices,
it is optimized for cloud-computing platforms;
therefore, some features may not be available on
embedded or mobile platforms.

4-6

State-of-the-A
rt Report: SEC

TIO
N

 4

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Similar to TensorFlow and PyTorch, MXNet is an
open-source DL framework, sponsored by The
Apache Software Foundation, that supports both
fast prototyping and production deployment.
The MXNet Python API called Gluon enables
practitioners to switch between imperative mode
for dynamic, flexible execution; symbolic mode for
fast, optimized execution; and model deployment
using different language bindings, including C++.
MXNet also enables scalable, distributed training
and performance optimization with multi-CPU
or multi-GPU support. Integration with Python,
as well as support for other languages including
C++ and Java, enables a smooth transition from
Python-based training to optimized deployment
for production. Additionally, a collection of libraries
and tools extends MXNet to enable applications in
computer vision, NLP, and several other domains.

4.4 SOFTWARE CONSIDERATIONS

The DL frameworks provided by hardware
manufactures, third-party software vendors, and
the open-source community build directly on low-
level, platform-specific libraries and APIs to enable
DL application development. These frameworks

offer building blocks for designing, training, and
deploying models, typically through a high-level
programming interface or GUIs and other user-
friendly interaction modalities.

Each of these frameworks provides functionality
necessary to develop an end-to-end DL system.
Differences in support for the various underlying
processor architectures, including degree of
optimization for any particular architecture,
suggest that vendor-specific frameworks provide
better performance for DNN training and inference
operations. However, as with the hardware
architectures themselves, other considerations,
including actual DL functionality, cost, licensing,
open- vs. closed-source implementation, and level
of vendor or community support, may become
factors as well.

The specific software libraries and frameworks
highlighted in this report represent only a small
subset of the currently available DL ecosystems.
Interested readers are encouraged to consult the
many available resources to learn more about these
and other DL libraries, APIs, SDKs, and frameworks.

5-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 5

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

05
Developments in DL hardware and software are
exceptionally fast paced, accelerated not only by
major processor manufacturers but also by DL
projects across academia, industry, and the wider
open-source community. The array of algorithms,
libraries, APIs, SDKs, and frameworks is extensive
and growing rapidly, and the domains in which DL
finds successful application is equally extensive
and growing at least as rapidly. Perhaps among
these, nowhere is DL more revolutionary than for
autonomous platforms.

5.1 AUTONOMOUS SYSTEMS

In his 2017 report, “Artificial Intelligence and
Autonomy: Opportunities and Challenges,” Andrew
Ilachinski characterizes an autonomous system as:

[A] system that can independently
compose and select among alternative
courses of action to accomplish
goals based on its knowledge and
understanding of the world; of itself; and
of the local, dynamic context. Unlike
automated systems, autonomous systems
must be able to respond to situations that
are not pre-programmed or anticipated
prior to their deployment. In short,
autonomous systems are inherently, and
irreducibly, artificially intelligent robots [39].

Of particular importance in this characterization is
a system’s ability to respond to situations that are
not preprogrammed. Recall that, historically, AI
systems require explicitly programmed algorithms

to handle each anticipated situation and response,
which necessarily limits the scope of potential
scenarios to make the explicit logic handling each
scenario tractable. In contrast, DL approaches
avoid explicit programming and instead expose
an AI system to a wide variety of scenarios with
known correct actions during training. The system
learns correct behaviors (even for scenarios not
explicitly encountered in training) and performs
appropriately during deployment.

5.2 CONVOLUTIONAL NEURAL NETWORKS

With modern DL techniques, an autonomous
system can learn and then execute correct
responses based on visual inputs. Recall that
massively parallel computing architectures (and
modern GPUs, in particular) have transformed
AI/ML with DNNs, leading to significant advances
in supervised representation learning tasks. For
example, in object detection, machine accuracy
now rivals human capabilities [5]. Recognition
accuracy is accomplished by augmenting
traditional DNNs operating on image data with
convolutional layers that learn complex visual
features (i.e., with CNNs).

CNNs capture patterns in multidimensional spaces
quite efficiently, making CNNs especially well
suited for image-based data (though they are used
to process other types of data as well). Specifically,
convolutional layers in CNNs apply convolution
kernels of a fixed size to each pixel in the input
layer. A convolution kernel is a filter or matrix that
encodes the weights applied to a pixel’s nearest

APPLICATIONS

5-2

State-of-the-A
rt Report: SEC

TIO
N

 5

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

neighbors. Each filter has different values and
extracts different features from the input image.
These weights are learned by the network during
training. The output of each convolutional layer
is a set of images, so-called convolutional images
or feature maps, to which the kernel has been
applied. The number and size of the feature maps
vary according to the kernel size and network
topology, but together the convolutional layers
detect a hierarchy of visual patterns. For example,
lower layers produce feature maps for vertical
and horizontal edges, corners, and other simple
patterns, while deeper layers detect more complex
patterns, such as grids, circles, and other geometric
shapes. Layer by layer, the network detects
complicated objects, such as cars, houses, trees,
and people, by building complex representations
from simpler features.

Most CNNs use pooling layers to gradually reduce
the size of their feature maps while retaining
the most important features. For example, max-
pooling retains the maximum value in a patch of
pixels. Using a pooling layer of size 2, max-pooling
extracts 2×2-pixel patches from the feature maps of
the preceding layer and retains the highest value,
as illustrated in Figure 5-1. This operation halves

the size of the maps but retains the most relevant
features. Pooling layers enable CNNs to generalize
their capabilities and reduce sensitivity to the
location of objects within images.

Ultimately, this process is applied repeatedly, layer
by layer, until feature maps comprise a single pixel.
The collection of single-pixel outputs is encoded
as a one-dimensional matrix that represents,
numerically, the prominent image features and
serves as input to a fully connected DNN that
performs the target task (e.g., image classification
or object detection).

As illustrated in Figure 5-2, modern CNNs achieve
superhuman performance in image classification
[18]. With high accuracy in common computer
vision tasks, CNNs are now powering the next
generation of autonomous mobile platforms. For
example, Bojarski et al. [40] demonstrate a CNN
controlling a car on various ground surfaces.
Likewise, TrailNet enables MAVs to navigate dense
forest trails [41], demonstrating autonomous flights
up to 1 km.

These and other autonomous systems require
accurate, robust, and high-performance computer

20 30

112 37
2 x 2 Max-Pool

12 30

34 37

8 2

112 25

20 0

70 4

12 0

100 12

Figure 5-1: Pooling Layers in a CNN (Source: SURVICE Engineering Company).

5-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 5

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

vision techniques that support a broad range
of tasks, including autonomous operation. An
example autonomous platform architecture is
depicted in Figure 5-3. Here, machines sense and
perceive their environment with computer vision
to extract meaningful information from the real
world, ultimately classifying, detecting, locating,
or tracking objects within that environment
[42]. When combined with hardware and
software components for decision and action,

these technologies realize a fully autonomous
system—one that achieves a set of goals in a
changing environment by gathering information
about its environment without human control or
intervention [43].

5.3 MODERN COMPUTER VISION

As outlined in Figure 5-4, core computer vision
techniques for machine perception include

Figure 5-2: Image Classification on ImageNet (Source: SURVICE Engineering Company).

Figure 5-3: Example Autonomous System Architecture (Source: BlackBerry QNX).

Cameras (360 coverage)

Ego Sensors (speed, IMU, wheel angle)

Time of Flight (LiDAR, radar, ultrasonic)

V2X (DSRC, 5G, cellular)

Positioning (GPS, HD maps, landmarks)

Featured Detection (image and signal
processing)

Classification
(pedestrians,
obstacles, signs)

Vehicle Control

Route Planning

Tracking (obstacles, vehicles, Kalman
filters)

Trajectory &
Maneuvers

Localization (precise location of vehicle)

Neural Nets

Scenarios &
Behaviors

Vehicle Physics
& Dynamics

Vehicle Physics
& DynamicsMobility

(traffic, ride
sharing)

Brake Actuator

Steering Actuator

Throttle Actuator

Gearbox Actuator

SAFETY MONITORING

5-4

State-of-the-A
rt Report: SEC

TIO
N

 5

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

image classification, object detection, and image
segmentation. Image classification determines or
classifies objects in an image or video frame and
predicts an image label. Classification models are
trained using large datasets comprising thousands
of ground-truth images and object labels relevant
to the anticipated deployment scenarios. As with
all supervised DL techniques, prediction accuracy
depends in part on the training data used—
increasingly more diverse, training data tends to
result in higher-accuracy predictions.

Object detection extends classification not only to
identify but also to localize objects within an image
or video frame. Detection models typically output
rectangular bounding boxes around detected
objects that indicate or bound their locations
within an image. Similar to image classifiers, object
detectors are trained to identify and locate objects
relevant to the anticipated deployment scenarios;
moreover, prediction accuracy depends, in part, on
the size and diversity of the training dataset.

Finally, image segmentation extends classification
to locate objects precisely by assigning a label
to every pixel in an image or video frame—
segmentation implements per-pixel classification.
In semantic segmentation, pixels with the same
label compose the same type of object or share
similar characteristics, such as color, texture, or

material. Here, multiple objects of the same class
make up a single semantic entity. In contrast,
instance segmentation treats multiple objects of
the same class as distinct instances (e.g., individual
cars on a busy roadway) and each object is assigned
a unique instance label. Panoptic segmentation
combines the concepts of both semantic and
instance segmentation by assigning two labels
to every pixel: a semantic label and an instance
identifier. Pixels thus belong to the same class and
instance (i.e., the same object) only when their
respective semantic and instance labels agree.

Segmentation models are the most widely
applicable and versatile models because they
provide the highest information content and
they are common in applications that require
high precision, such as medical imaging, remote
sensing, or autonomous navigation. However,
they are also the most expensive to develop, train,
and execute because they require ground-truth
training data with per-pixel labels and generating
these datasets is a laborious and often tedious
process. Although flexible, segmentations models
may be unnecessarily complex or expensive for
machine perception tasks in which simpler image
classification or object detection models will suffice
or for application domains that do not necessarily
require precise, per-pixel labels.

Figure 5-4: Computer Vision Techniques for Machine Perception (From Left to Right: Classification, Object Detection, Semantic Segmentation,
and Instance Segmentation) (Source: SURVICE Engineering Company).

5-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 5

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

5.4 EXAMPLE DoD USE CASES

Together with the commodity hardware and
software components accelerating DL, modern
computer vision techniques provide the basis for
autonomous platforms in several applications
across the U.S. Department of Defense (DoD).
For example, the U.S. Navy and Marine Corps
Small Tactical UAS Program Office (PMA-263)
envisions rapid-deploy autonomous systems that
are modular, open-architecture aerial platforms
equipped with advanced sensors and payloads to
resupply Warfighters on the front line. The PMA-
263 Tactical Resupply Unmanned Aircraft System
(TRUAS) effort seeks a UAS capable of transporting
at least 60 lb of cargo in various configurations
commonly found in U.S. Marine resupply
operations [44]. Vision-based autonomous
navigation powered by DL will enable small,
inexpensive aerial platforms, such as SURVICE
Engineering’s TRV-150 Tactical Resupply UAS
depicted in Figure 5-5, to support assured logistics
resupply, even in GPS-denied regions, to satisfy the
TRUAS program requirements.

Similarly, the Artificial Intelligence for Maneuver
and Mobility Essential Research Program endeavors
to reduce soldier distractions on the battlefield
through the integration of autonomous systems
in U.S. Army vehicles, including the construction
of a robotic combat vehicle that operates
independently of the main vehicle. The recent
advances in commodity DL technologies enable
narrow AI, or the ability to complete very specific
tasks consistently, which is a first step necessary
to realize autonomous teammates for soldiers.
Continued development of these technologies will
enable future combat vehicles that fully sense and
perceive their environment and thereby realize
an autonomous system that is able to analyze
complex, adversarial environments and develop
possible courses of action [45].

These technologies also serve as proof of concept
for applications at the local, state, and federal
levels. For example, vision-based autonomous

navigation will allow law enforcement to
track fleeing individuals through dense urban
environments. Likewise, autonomous drones
will track and capture unauthorized UASs using
similar DL methods, while, prior to infiltration by
manned forces, intelligent MAVs will navigate and
map dense urban environments, potentially even
building interiors.

5.5 APPLICATION CONSIDERATIONS

The size and complexity of practical DNNs is
growing rapidly as researchers seek increasingly
higher levels of accuracy in computer vision tasks.
Large and complex DNNs require significant
resources (i.e., computation, storage, and energy)
to repeatedly execute inference operations.
Small, inexpensive autonomous platforms are
inherently resource limited; therefore machine-
perception algorithms with lower computational
cost (i.e., smaller, less complex DNNs) typically
perform best on such platforms. For example,
practitioners might consider solutions based on
image classification or object detection for real-

Figure 5-5: SURVICE Engineering’s TRV-150 Tactical Resupply UAS
(Source: U.S. Navy).

5-6

State-of-the-A
rt Report: SEC

TIO
N

 5

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

time systems operating at the tactical edge, while
solutions based on semantic, instance, or panoptic
segmentation, which enable potentially more
detailed analyses, are a better match for systems
operating in resource-rich environments.

As with the underlying hardware and software
components, DNN-based computer vision
techniques provide certain advantages and suffer
from certain disadvantages; therefore, matching
these techniques both to the problem at hand and
to the target platform constraints is a critical step in
planning an end-to-end DL system. Here, testing is
the only sure-fire method for ensuring an algorithm
satisfies application constraints—first, in solving
the problem, and second, in executing efficiently
using available resources. Practitioners should
once again conduct various tests to determine
the accuracy, performance, and efficiency
requirements necessary to satisfy application
constraints. These parameters will determine the
characteristics of the machine vision techniques
appropriate to the task at hand.

Modern computer vision techniques provide
a foundation for a wide range of tracking and
navigation applications that are otherwise out
of reach without modern, high-performance DL.
These techniques deliver best-in-class performance
and accuracy for the low-level visual perception
tasks that drive higher-level applications of
autonomy.

The specific techniques highlighted in this
report represent only a small subset of the DL
technologies enabling autonomy on small,
inexpensive platforms, however. Interested readers
are encouraged to consult the many available
resources to learn more about these and other
applications of DL in autonomy.

6-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 6

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

06
Despite success across several application domains,
DL is not without challenges. For example, a DNN’s
effectiveness is, in part, dependent on both the
quantity and quality of the data with which it is
trained. This data shapes a model’s ability to learn
critical features and, as a result, must be carefully
and deliberately curated for DL applications.

Typical DNNs require sufficient data (sometimes
more than 10 million samples) to not only identify
features on their own but to do so reliably. In his
paper “Deep Learning: A Critical Appraisal” [46],
Gary Marcus notes that many experts consider
humans to be far more efficient in learning complex
rules than DL systems [47–49]. He writes, “Deep
learning currently lacks a mechanism for learning
abstractions through explicit, verbal definition, and
works best when there are thousands, millions or
even billions of training examples…In problems
where data are limited, deep learning often is not
an ideal solution.”

At the same time, training data must provide
sufficient variation in the critical features to prevent
overfitting. Recall that overfitting is the problem
in which a model effectively memorizes features
in training samples but is unable to generalize
these features to new, previously unseen, data
(i.e., prediction works well for the training set but
not for samples gathered during inference in a
real-world environment). However, data quality is
typically a task-specific measure; therefore, curating
high-quality data often requires domain-specific
knowledge.

In contrast, sources of erroneous data are common:
errors in data collection; erroneous, irrelevant, or
incomplete measurements; incorrect or irrelevant
content; or even statistical outliers and duplicate
samples. DL algorithms are similarly vulnerable to
adversarial samples—inputs crafted by adversaries
with the intent of causing prediction failure [50,
51]. Often, erroneous or adversarial samples are
easily detected and ignored by human learners, but
DL models are highly sensitive to the training data
they ingest, as erroneous or adversarial samples
can induce potentially catastrophic errors in DNN
prediction.

DL practitioners also encounter a lack of
transparency, or the so-called black box problem,
where even DL experts do not yet fully understand
exactly why DNNs make certain predictions.
Whereas predictions made by rule-based software
can be traced to previous decision blocks, DL
models operate differently, effectively sifting
through millions of samples to discover patterns
and correlations among them—relationships that
often remain hidden, even from human experts.
Current DL systems have millions or even billions
of parameters identifiable to model developers not
in terms of well-known, well-understood software
development constructs, such as structured
programming control blocks, variables, and so
forth, but only in terms of their location within
incredibly complex networks of artificial neurons
and synaptic weights [46].

CHALLENGES

6-2

State-of-the-A
rt Report: SEC

TIO
N

 6

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

At the same time, lack of transparency complicates
practitioners’ understanding of why DNNs fail.
Accurate, correct, and robust predictions are as
important as prediction performance and even
more important in mission-critical scenarios,
where split-second decisions based not just on fast
predictions but on accurate, correct, and robust
predictions can mean the difference between
success and failure. In this context, Marcus
observes, “The transparency issue, as yet unsolved,
is a potential liability when using deep learning for
problem domains … in which human users might
like to understand how a given system made a
given decision” [46].

The specific challenges discussed in this report
are just a few of the many-facing contemporary
DL techniques, and the DL community is working
hard to uncover, understand, and overcome these
challenges. Interested readers are encouraged to
consult the many available resources to learn about
these and other challenges facing modern DL
techniques.

7-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 7

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

DL combines recent developments in high-
performance DNNs, massively parallel computing
architectures, and hardware-optimized software
components with large collections of real-world
training data to support autonomy for small,
inexpensive platforms.

• DNNs. Significant advances in computational
performance have ignited a resurgence in
AI/ML applications, particularly those based
on DL. DL is a class of AI/ML algorithms that
solve the representation learning problem
by building complex representations from
simpler concepts [3]. Modern DL approaches
exploit DNNs—multilayered neural networks
composed of artificial neurons taking several
inputs and producing a single output—to
support a diverse range of applications (from
computer vision and speech recognition to
medical imaging and combat support).

• Massively Parallel Computing. Massively
parallel computing architectures (modern
GPUs, in particular) offer a compelling platform
to satisfy the demands of compute intensive
applications, including AI/ML applications.
These architectures boast tens, hundreds, and
thousands of processing cores that provide a
massively parallel computational environment
at a fraction of the cost of traditional HPC
systems. With the mapping of DNNs to modern
GPUs [4], DNNs now achieve breakthrough
performance in the modern computer vision
tasks that form the basis of autonomous
mobile platforms.

• Hardware-Optimized Software. Massively
parallel computing architectures typically
dictate that computations be arranged
differently than with traditional processors.
While modern parallel programming
paradigms and compiler technologies address
some of the difficulties, rarely are practitioners
required to develop DL applications at a low
level. Instead, popular DL libraries, APIs, SDKs,
and frameworks exploit these architectures
effectively, while exposing higher-level DL
functionality and workflows that increase
productivity; promote flexibility; and enable
modern, high-performance, and scalable DL
applications.

These state-of-the-art AI/ML hardware and
software technologies enable fast, accurate,
and robust DL applications and, together, deliver
best-in-class performance and accuracy for the
low-level tasks that drive higher-level applications
of autonomy.

07 SUMMARY

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

8-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 R
EF

ER
EN

C
ES

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

1. Roborace. “Roborace.” https://roborace.com/, accessed
on 16 July 2022.

2. SURVICE Engineering Company, LLC. “Tactical Resupply
Vehicle (TRV).” https://survice.com/who-we-are/focus-
areas/tactical-resupply-vehicle-trv, accessed on 16 July
2022.

3. Goodfellow, I., Y. Bengio, and A. Courville. Deep
Learning. Cambridge: MIT Press, 2016.

4. Krizhevsky, A., I. Sutskever, and G. E. Hinton. “ImageNet
Classification With Deep Convolutional Neural
Networks.” Advances in Neural Information Processing
Systems, pp. 1097–1105, 2012.

5. He, K., X. Zhang, S. Ren, and J. Sun. “Delving Deep Into
Rectifiers: Surpassing Human Level Performance on
ImageNet Classification.” arXiv:1502.01852v1,
https://arxiv.org/abs/1502.01852, accessed on
23 August 2022.

6. McCulloch, W. S., and W. Pitts. “A Logical Calculus of
the Ideas Immanent in Nervous Activity.” Bulletin of
Mathematical Biophysics, vol. 5, pp. 115–133, 1943.

7. Rosenblatt, F. “The Perceptron: A Probabilistic Model
for Information Storage and Organization in the Brain.”
Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

8. Kelley, H. J. “Gradient Theory of Optimal Flight Paths.”
ARS Journal, vol. 30, no. 10, pp. 947–954, 1960.

9. Dreyfus, S. “The Numerical Solution of Variational
Problems.” Journal of Mathematical Analysis and
Applications, vol. 5, no. 1, pp. 30–45, 1962.

10. Ivakhenko, A., and V. G. Lapa. Cybernetic Predicting
Devices. New York: CCM Information Corporation,
1965.

11. Fukushima, K. “Neocognitron: A Self-Organizing Neural
Network Model for a Mechanism of Pattern Recognition
Unaffected by Shift in Position.” Biological Cybernetics,
vol. 36, no. 4, pp. 193–202, 1979.

12. LeCun, Y., B. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. Hubbard, and L. D. Jackel.
“Backpropagation Applied to Handwritten Zip Code
Recognition.” Neural Computation, vol. 1, no. 4,
pp. 541–551, 1989.

13. Foote, K. D. “A Brief History of Deep Learning.”
https://www.dataversity.net/brief-history-deep-
learning/, accessed on 16 July 2022.

14. Chawla, V. “Is More Data Always Better for Building
Analytics Models?” https://analyticsindiamag.com/
is-more-data-always-better-for-building-analytics-
models/, accessed on 16 July 2022.

15. Wikipedia. “AlexNet.” https://en.wikipedia.org/wiki/
AlexNet, accessed on 16 July 2022.

16. Glorot, X. “Deep Sparse Rectifier Neural Networks.”
Proceedings of Machine Learning Research, vol. 15,
pp. 315–323, 2011.

17. Wei, J. “AlexNet: The Architecture That Changed
CNNs.” https://towardsdatascience.com/alexnet-the-
architecture-that-challenged-cnns-e406d5297951,
accessed on 17 July 2022.

18. Stanford Vision Lab. “ImageNet Large Scale Visual
Recognition Challenge.” https://www.image-net.org/
challenges/LSVRC/, accessed on 17 July 2022.

19. DeepMind. “AlphaGo.” https://www.deepmind.com/
research/highlighted-research/alphago, accessed on
16 July 2022.

20. Collobert, R., J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. “Natural Language
Processing (Almost) From Scratch.” Journal of Machine
Learning Research, vol. 12, pp. 2493–2537, 2011.

21. Otter, D. W., J. R. Medina, and J. K. Kalita. “A Survey of
the Usages of Deep Learning for Natural Language
Processing.” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 2, pp. 604–624, 2020.

22. Litjens, G., T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and
C. I. Sanchez. “A Survey on Deep Learning in Medical
Image Analysis.” Medical Image Analysis, vol. 42,
pp. 60–88, 2017.

23. Jagannath, A., J. Jagannath, and T. Melodia. “Redefining
Wireless Communication for 6G: Signal Processing
Meets Deep Learning.” arXiv:2004.10715v5,
https://arxiv.org/abs/2004.10715, accessed on
23 August 2022.

24. Polydoros, A. S., and L. Nalpantidis. “Survey of Model-
Based Reinforcement Learning: Applications on
Robotics.” Journal of Intelligent and Robotic Systems,
vol. 86, no. 2, pp. 153–173, 2017.

25. Pouyanfar, S., S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes,
M.-L. Shyu, S.-C. Chen, and S. S. Iyengar. “A Survey
on Deep Learning: Algorithms, Techniques, and
Applications.” ACM Computing Surveys, vol. 51,
no. 5, 2019.

26. Dong, S., P. Wang, and K. Abbas. “A Survey on Deep
Learning and its Applications.” Computer Science
Review, vol. 40, 2019.

REFERENCES

8-2

State-of-the-A
rt Report: REFEREN

C
ES

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

REFERENCES, continued

27. Intel Corporation. “Intel Movidius Myriad X VPU
Product Brief.” https://www.intel.com/content/www/
us/en/products/docs/processors/movidius-vpu/myriad-
x-product-brief.html, accessed on 17 July 2022.

28. Teledyne Flir, LLC. “Firefly DL|Teledyne Flir.”
https://www.flir.com/products/firefly-
dl/?vertical=machine%20vision&segment=iis,
accessed on 17 July 2022.

29. Whang, C., Q. Yu, X. Li, Y. Xie, and X. Zhou. “DLAU: A
Scalable Deep Learning Accelerator Unit on FPGA.”
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 33, no. 6,
pp. 513–517, 2016.

30. Boyd, C. “Data-Parallel Computing.” ACM Queue,
March/April 2008.

31. Fatahalian, K., and M. Houston. “GPUs: A Closer Look.”
ACM Queue, March/April 2008.

32. oneAPI. “oneAPI Programming Model|oneAPI.”
https://www.oneapi.io/, accessed on 16 July 2022.

33. Alameddine, H. A., S. Sharafeddine, S. Sebbah,
S. Ayoubi, and C. Assi. “Dynamic Task Offloading and
Scheduling for Low-Latency IoT Services in Multi-Access
Edge Computing.” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3,pp. 668–682, 2019.

34. Hu, Y.-C., M. Patel, D. Sabella, N. Sprecher, and V. Young.
“Mobile Edge Computing: A Key Technology Towards
5G.” ETSI White Paper, no. 11, pp. 1–16, 2015.

35. Tian, X., J. Zhu, T. Xu, and Y. Li. “Mobility-Included DNN
Partition Offloading From Mobile Devices to Edge
Clouds.” Sensors, vol. 21, no. 1, pp. 1–16, 2021.

36. Shaikh, A., and M. J. Kaur. “Comprehensive Survey of
Massive MIMO for 5G Communications.” Proceedings
of Advances in Science and Engineering Technology
International Conference, pp. 1–5, 2019.

37. Nadembega, A., A. S. Hafid, and R. Brisebois.
“Mobility Prediction Model-Based Service Migration
Procedure for Follow Me Cloud to Support QoS and
QoE.” Proceedings of IEEE International Conference on
Communications, 2016.

38. Google, LLC. “API Documentation|TensorFlow Core
v2.9.0.” https://www.tensorflow.org/api_docs,
accessed on 16 July 2022.

39. Ilachinski, A. “Artificial Intelligence and Autonomy:
Opportunities and Challenges.” DIS 2017-U-016388,
Center for Naval Analyses, Arlington, VA, October 2017.

40. Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, X. Zhang, J. Zhao, and K. Zieba. “End to End

Learning for Self-Driving Cars.” arXiv:1604.07316v1,
https://arxiv.org/abs/1604.07316, accessed on
23 August 2022.

41. Smolyanskiy, N., A. Kamenev, J. Smith, and S. Birchfield.
“Toward Low-Flying Autonomous MAV Trail Navigation
Using Deep Neural Networks.” arXiv:1705.02550v3,
https://arxiv.org/abs/1705.02550, accessed on
23 August 2022.

42. Brown, R. “Role of Computer Vision in AI for
Developing Robotics, Drones and Self Driving Cars.”
https://becominghuman.ai/role-of-computer-vision-
in-ai-for-developing-robotics-drones-self-driving-cars-
9c92b89d57c, accessed on 16 July 2022.

43. BlackBerry Limited. “Autonomous Systems|Ultimate
Guides|BlackBerry QNX.” https://blackberry.qnx.com/
en/ultimate-guides/autonomous-systems, accessed on
16 July 2022.

44. NAVAIR News. “Navy UAS Demo Displays Potential for
Future Cargo Resupply.” https://www.navair.navy.mil/
news/Navy-UAS-demo-displays-potential-future-cargo-
resupply/Tue-11092021-0729, accessed on 16 July 2022.

45. U.S. Army. “Army Researchers Augment Combat
Vehicles With AI.” https://www.army.mil/article/236733/
army_researchers_augment_combat_vehicles_with_ai,
accessed on 16 July 2022.

46. Marcus, G. “Deep Learning: A Critical Appraisal.”
arXiv:1801.00631v1, https://arxiv.org/abs/1801.00631,
accessed on 23 August 2022.

47. Lake, B. M., R. Salakhutdinov, and J. B. Tenenbaum.
“Human-Level Concept Learning Through Probabilistic
Program Induction.” Science, vol. 350, no. 6266,
pp. 1332–1338, 2015.

48. Lake, B. M., T. D. Ullman, J. B. Tenenbaum, and
S. J. Gershman. “Building Machines That Learn
and Think Like People.” Behavioral and Brain Sciences,
vol. 40, 2017.

49. Marcus, G. F., S. Pinker, M. Ullman, M. Hollander,
T. J. Rosen, and F. Xu. “Overregularization in Language
Acquisition.” Monographs of the Society for Research in
Child Development, vol. 57, no. 4, pp. 1–182, 1992.

50. Goodfellow, I. J., J. Shlens, and C. Szegedy.
“Explaining and Harnessing Adversarial Examples.”
arXiv:1412.6572v3, https://arxiv.org/abs/1412.6572v3,
accessed on 23 August 2022.

51. Yuan, X., P. He, Q. Zhu, and X. Li. “Adversarial Examples:
Attacks and Defenses for Deep Learning.” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 30, no. 9, pp. 2805–2824, 2019.

9-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 B
IB

LI
O

G
RA

PH
Y

Commodity Deep Learning Technologies Supporting Autonomy on Small, Inexpensive Platforms
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Interested readers are encouraged to consult the many
available resources to learn more about the commodity
hardware and software technologies highlighted in this
state-of-the-art report (SOAR). The scholarly articles, product
websites, and news stories cited throughout this SOAR
provide many details for a thorough study of these topics,
but links are provided for some of the most useful online
resources to serve as a springboard for those interested in
getting started quickly.

HARDWARE

Advanced Micro Devices, Inc. “Machine Learning (ML)|Deep
Learning (DL)|AMD.” https://www.amd.com/en/
technologies/deep-machine-learning.

Ben-Zvi, N. “A 2022-Ready Deep Learning Hardware Guide.”
https://towardsdatascience.com/another-deep-learning-
hardware-guide-73a4c35d3e86.

Intel Corporation. “Intel Artificial Intelligence (AI) and Deep
Learning Solutions.” https://www.intel.com/content/
www/us/en/artificial-intelligence/overview.html.

LeCun, Y. “Deep Learning Hardware: Past, Present, and
Future.” IEEE International Solid State Circuits Conference,
http://www.cit.ctu.edu.vn/~dtnghi/rech/p2017/lecun-
isscc-19.pdf, February 2019.

NVIDIA Corporation. “Deep Learning|NVIDIA Developer,”
https://developer.nvidia.com/deep-learning.

SOFTWARE

Advanced Micro Devices, Inc. “ROCm|Machine
Learning|AMD,” https://www.amd.com/en/graphics/
servers-solutions-rocm-ml.

Exxact Corporation. “A Breakdown of Deep Learning
Frameworks,” https://www.exxactcorp.com/blog/Deep-
Learning/a-breakdown-of-deep-learning-frameworks.

Intel Corporation. “AI Tools,” https://www.intel.com/content/
www/us/en/developer/topic-technology/artificial-
intelligence/tools.html.

MXNet, https://mxnet.apache.org/versions/1.9.0/.

NVIDIA Corporation. “Deep Learning Software,”
https://developer.nvidia.com/deep-learning-software.

PyTorch, https://pytorch.org/.

TensorFlow, https://www.tensorflow.org/.

BIBLIOGRAPHY

COMMODITY DEEP
LEARNING TECHNOLOGIES
SUPPORTING AUTONOMY
ON SMALL, INEXPENSIVE
PLATFORMS
By Christiaan Gribble

CSIAC-BCO-2022-233

	Contents
	About CSIAC
	THE Author
	Abstract
	Acknowledgments
	Introduction
	Background
	Hardware
	3.1 Core Operations
	3.2 Parallel Computing
	3.3 Commodity Hardware Platforms
	3.4 Special-Purpose Hardware
	3.5 Hardware Considerations

	Software
	4.1 Programming Model
	4.2 DL Programming Libraries
	4.3 DL Frameworks
	4.4 Software Considerations

	Applications
	5.1 Autonomous Systems
	5.2 Convolutional Neural Networks
	5.3 Modern Computer Vision
	5.4 Example DoD Use Cases
	5.5 Application Considerations

	Challenges
	Summary
	References
	References

