Optimization Techniques: Improving Effectiveness for Defense Simulation Models

Jennifer Blum, Ph.D. CSIAC Webinar 12 December 2023 OptTek Systems, Inc. Distribution Statement A: Approved for public release. Distribution is unlimited.

Topics

- What is simulation optimization?
- Why is it important?
- Approaches (metaheuristics)
- Use cases

Simulation

- "Simulation is the imitation of the operation of a real-world process or system over time."
 - Banks, J., Carson, J. S., & Nelson, B. L., *Discrete-Event* System Simulation, 2nd Ed., Prentice Hall (1999)
- Real-world systems are often:
 - Uncertain
 - Nonlinear
 - Complex
- Very powerful method to ensure model is <u>close</u> to real-world system
- Discrete event vs. continuous
- Live/virtual vs. constructive

Optimization

Optimization is a prescriptive methodology

- Prescribe decisions that produce the "best" outcome for the real-world system
- Again, we must model the real-world system
- General optimization model:

 $\begin{array}{ll} \text{Minimize} & f(x)\\ \text{Subject to:} & x \in \Omega\\ \Omega = \{x \in \mathbb{R}^n \mid g_i(x) \geq 0, i = 1, \dots, m, \, h_j(x) = 0, \, j = 1, \dots, k\} \end{array}$

- Linear vs. nonlinear
- Continuous vs. discrete
- Single vs. multiobjective

Combining Simulation With Optimization

 Constructive simulations are often "black boxes" where a given input results in a random output, i.e.,

$$x \longrightarrow$$
 Simulation $\longrightarrow Y$

In optimization, suppose at least one of our functions is determined by a simulation model, i.e.,

$$x \to f_j(x) \to Y$$

- Then:
 - Optimization model is a simulation optimization problem
 - Classic optimization solution methods break down, i.e., "black-box optimization" or "gradient-free optimization"

Simulation Optimization

Which possible sets of model specifications (i.e., input parameters and/or structural assumptions) lead to optimal performance?

> Simulation model

Why Is Simulation Optimization Required?

- Complex models contain many variables and constraints as well as uncertainty.
- What-if approach unlikely to result in an optimal answer due to large number of possible solutions.
- Inability of pure optimization to model complexities, uncertainties, and dynamics of scenarios.
- Simulation-optimization removes these inabilities by combining both approaches.

Why Is Simulation Optimization Required? (cont.)

- A total solution requires both capabilities.
- Integrated two-step solution:
 - 1. Simulation
 - 2. Optimization
- Both are necessary, neither is sufficient.
- Simulation enables understanding/modeling and communications of uncertainty.
- Optimization enables the management of uncertainty.

Common Simulation Analyst Tasks

Analysts use simulation models to determine:

- Future acquisition and investment strategy
- Best mix and placement of assets to counter threats and meet operational objectives
- Best parameters, rule sets, or CONOPS under which to operate
- Design parameters for a planned system to meet operational requirements

Analyst & Simulation Models

- Set up and run a limited number of excursions
 - Manual modifications
 - Sometimes scripting
 - Limited exploration and time
 - Limitations with design of experiments
 - Sometimes enumeration
 - Limited variables and levels due to complex combinations
 - Rarely optimization
 - Never true multiobjective
- Manual post-run data collection and analysis

Studies are often behind schedule, and the simulation run and analysis period is shortened.

Integrating Optimization and Analytics With Existing Models

 Optimization, meta-model, design of experiments, batch, and external sampling modes

Approaches

Metaheuristics

Heuristic

- "a technique which seeks good (i.e., near-optimal) solutions at a reasonable computational cost without being able to guarantee either feasibility or optimality, or even in many cases to state how close to optimality a particular feasible solution is."
 - Reeves, C. R. (editor), *Modern Heuristic Techniques for Combinatorial Problems,* McGraw Hill (1995)

Metaheuristics

Heuristic

- "a technique which seeks good (i.e., near-optimal) solutions at a reasonable computational cost without being able to guarantee either feasibility or optimality, or even in many cases to state how close to optimality a particular feasible solution is."
 - Reeves, C. R. (editor), *Modern Heuristic Techniques for Combinatorial Problems,* McGraw Hill (1995)

Metaheuristic

- "a master strategy that guides and modifies other [solution procedures] beyond those that are normally generated in a quest for local optimality."
 - Glover, F., Laguna, M., *Tabu Search*, Kluwer Academic Publishers (1997)
- A heuristic that guides another heuristic

Metaheuristic Examples

- Heuristic examples:
 - Nearest neighbor for traveling salesperson problem (TSP)
 - Bang-per-buck for knapsack problem
 - Local search

Image Source: Microsoft 365 Stock Image

Metaheuristic Examples

Heuristic examples:

- Nearest neighbor for traveling salesperson problem (TSP)
- Bang-per-buck for knapsack problem
- Local search
- Metaheuristic examples:
 - Neighborhood based
 - Simulated annealing
 - Tabu search
 - Evolutionary or population based
 - Scatter search
 - Genetic algorithms

Evolutionary Metaheuristics - Scatter Search

- Evolutionary method that combines solutions in a reference set to create new solutions
- The notion of combining items to create new ones was originated in the 60s:
 - Combining choice rules in scheduling
 - Combining constraints in integer programming (surrogate constraint method)

Graphical Representation

- Combination methods may generate new trial solutions that violate the linear constraints and variable restrictions.
- The mapping consists of finding a feasible solution that is as close as possible to the infeasible trial solution.

Graphical Interpretation

Simulation Optimization Conclusion

- Real-world systems are often:
 - Complex: lots of uncertainty with nonlinear relationships
 - Often modeled using simulation and/or optimization
- Simulation: very powerful methodology to ensure model is <u>close</u> to real-world system
- Optimization: needed for prescriptive analysis
 - Large-scale classic optimization problems are hard ... so we use metaheuristics
 - Classic optimization techniques often do not apply to simulation optimization problems ... so we use metaheuristics

Use Cases

Optimize Blue Response

- Optimize the location and configuration of blue forces to meet objectives:
 - Maximize number of leakers
 - Minimize number of blue resources

AFSIM Notional Scenario

Image Source: Original Screenshot

Maximal Satellite Coverage

- Optimize target coverage varying spacecraft orbital parameters and system configuration:
 - Vary orbits, number and type of spacecraft, and configurations
 - Add constraints to designate coverage thresholds for priority targets/areas

Image Source: Shutterstock

Cyber Optimization and Analysis

- Optimize solution to minimize loss of function and duration of effect against cyber attacks:
 - Explore scenarios in the cyber kill chain that are most detrimental
 - Test limits of the system and identify key components that must be protected at all costs

Image Source: Shutterstock

Launch and Deployment Optimization

- Optimize launch parameters for minimal deployment cost while meeting mission parameters:
 - Launch cost is a large part of satellite cost
 - Subsystems performance affects the launch vehicle
 - Optimize flight trajectory until orbit injection
 - Vary parameters such as initial launch angle, subsystem speed, altitude, aimpoint, and orbital maneuvering systems

Image Source: Shutterstock

Training Scenario Optimization

- Optimize training scenarios to meet the most training requirements:
 - Tailor individual training scenarios for large groups of trainees
 - Provide post-event reviews with automated discovery of optimal choices

Image Source: Shutterstock

blum@opttek.com

www.OptTek.com

Questions?