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ABSTRACT

The application of artificial intelligence (AI) 
to software supply chains (SSCs) within the 
defense industrial base (DIB) holds promise to 
improve cybersecurity posture, ensure stricter 
compliance with National Institute of Standards 
and Technology (NIST) controls, and increase user 
confidence in software built in part upon modules 
and libraries from outside repositories.  AI can 
provide analysts with suggested frequencies for 
(re)scanning, supplement threat assessments 
of infrastructure, automate threat intelligence 
processing, and expedite cybersecurity risk 
management.  Moreover, the security of SSCs in 
the DIB can benefit from similar uses of AI as a 
recommendation engine for communicating the 
probability of compromise.  For U.S. Department 
of Defense cybersecurity analysts, AI-driven 
automation can provide insight into how closely 
software capabilities deployed on military and 
government networks adhere to NIST compliance 
standards.  The ability to reflect the most up-to-
date set of vulnerabilities within a system security 
plan could significantly improve upon the existing 
practice of relying on manual internal scanning.  
AI can enable human-in-the-loop workflows to 
optimize the integration of processed threat 
intelligence and better identify vulnerabilities per 
software and/or operating system.  This report 
presents and discusses how AI can protect SSCs 
purpose-built for the DIB ecosystem.
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EXECUTIVE SUMMARY

Managing the intricate and diverse supply chain 
within the U.S. government involves a heavy 
reliance on an extensive and varied network of 
suppliers and vendors for software components.  
This dependence introduces a range of challenges 
in ensuring the security of these software 
components.  To address these software supply 
chain (SSC) security challenges effectively, a 
combination of technical solutions, robust security 
practices, collaboration among stakeholders, and 
adherence to industry standards is essential.

Prioritizing SSC security is critical for organizations 
to mitigate risks and safeguard against potential 
vulnerabilities and attacks.  Unfortunately, 
federal entities often lack complete visibility 
into their SSCs, including information about the 
origin, integrity, and security of both packet and 
precursor components.  This lack of visibility makes 
it challenging to identify and mitigate risks and 
vulnerabilities.  Furthermore, reliance on third-
party vendors introduces additional risks related 
to the security practices and integrity of provided 
software components.

To secure SSCs, it is crucial to implement 
preventive strategies against attacks.  This can be 
achieved by establishing a security baseline and 
engaging in robust and continuous behavioral 
monitoring practices.  The most sophisticated 
of these behavior-based methods involves the 
utilization of artificial intelligence (AI) models to 
forecast, infer, predict, correlate, and pinpoint likely 
weaknesses, potential attack vectors, and avenues 
of approach within SSC-embedded software.   
AI-powered systems can continuously monitor 
SSCs in real time, identifying suspicious activities 
and flagging actions that would otherwise allow 
for unauthorized access.

AI models are particularly well suited for the 
automation of routine SSC security audits and 
assessments that are intended to detect potential 
vulnerabilities, risks, and security control gaps.  
Such a proactive, real-time approach enables 
organizations to address potential exploits and 
vulnerabilities promptly and, if a penetration does 
occur, to receive immediate alerts to facilitate 
swift responses to security incidents, minimizing 
damage.  Moreover, the integration of AI with 
security coding workflows can streamline the 
autocompletion and updating of required 
compliance practices, thereby enhancing overall 
code quality, defect reduction, and efficiency.
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SECTION

01
Once used by the U.S. military in only its most 
high-tech systems, software is now omnipresent 
across the defense establishment.  As the Defense 
Innovation Board noted in 2019, software drives 
“almost everything” that the U.S. Department of 
Defense (DoD) “operates and uses,” from discrete 
weapons systems to the overarching networks that 
provide command, control, and communications 
capabilities for commanders [1].  While protecting 
DoD systems from traditional cyberbased attacks 
will remain an enduring challenge, threats to 
the security of the software supply chains (SSCs) 
that develop and produce critical products 
have recently risen in prominence as a preferred 
threat vector for penetrating and compromising 
information systems.  By one estimate, the number 
of SSC attacks against commercial and public 
entities in the United States increased by more 
than 700% between 2019 and 2023 [2].  SSC attacks 
have become such an acute threat that the real-
time tracking of SSC incidents has become a niche 
subsection of the cybersecurity solutions market [3].

1.1  DEFINING SSC ATTACKS

As its name suggests, an SSC refers both to the 
process of developing code-based packages  
across multiple parties and the outcome of 
chained-development activities into usable 
software products.  SSCs encompass software 
modules, libraries, registries, and components,  
as well as all the hardware, operating systems,  
and cloud services that may be used during the 
coding and development process.  As one leading 

software developer Red Hat has pointed out, an 
SSC is most properly considered to include even  
the people who write the code [4].  Current 
software development practices are relatively open, 
especially when compared with traditional coding 
methods, which remained in use well into the 
early 2000s.  Instead of single entities developing 
software—entirely in house and by writing all code 
from scratch—current practices intentionally draw 
upon broad software communities.  Developers 
leverage code sourced from external (but 
interconnected) libraries and modules that may 
serve different purposes for an application (e.g., 
encryption, authentication, and networking) [4].

Although this type of community development 
delivers key efficiencies to software production, 
it also presents bad actors with a wide range of 
potential threat vectors.  Admitting dependencies 
through SSC development can introduce 
exploitable software code that is vulnerable to 
numerous, and cascading, vulnerabilities into the 
postbuilt product code baseline (see Figure 1-1).  
An SSC attack might seek to exploit open-source or 
shared tools, or to illicitly access a single developer’s 
proprietary build infrastructures [5].  Whatever 
the vector, an SSC attack consists of at least two 
elements:  (1) a malign actor compromising at least 
one supplier within an SSC and (2) that vulnerability 
then being used to harm other supplier(s) or the 
final product/customer.  While it is possible that an 
SSC can be penetrated in part due to the actions of 
an insider, leading defense intelligence authorities 
like the U.S. National Counterintelligence and 

INTRODUCTION
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Security Center see cyberbased (or software 
enabled) SSC attacks as the more common and, 
thus, greater threat at present [5].

The documented ability to exploit vulnerabilities 
in an SSC has existed since at least the 1980s, when 
the “Ken Thompson hack” or “trusting trust attack” 
demonstrated the ability to compromise source 
code while leaving behind almost no trace of 
alteration [7].  Since then, the massive expansion 
of software production and the ubiquitous use of 
connected information systems across all sectors 
of the economy have made SSC exploits a prime 
vector for malign actors.  For example, SSC attacks 
often target popular package managers (e.g., node 
package manager [npm] for Javascript node.js) 
and their user communities.  These communities 
have experienced incredible growth over the 
past decade—the number of public repositories 
hosted in the GitHub platform grew from 46,000 

in early 2009 to more than 200 million by 2022 [5].  
Accordingly, adversarial nation-states, terrorists, 
and other transnational criminal organizations 
recognize that SSC attacks can cause widespread 
and cascading harmful effects, all while requiring 
relatively few resources to execute [8].

A number of headline penetrations in recent years 
have raised the profile of SSC attacks for malign 
actors.  In 2017, the “NotPetya” SSC cyberattack—
the most damaging such attack then to date—
infected a line of accounting and tax reporting 
software used by the Ukrainian government  
before spreading to several large multinational 
firms.  The malware that Russian-sponsored  
hackers inserted disrupted email systems at a  
major food manufacturer and disabled multiple 
logistics systems for an international shipping 
company.  In doing so, NotPetya even crippled  
one pharmaceutical firm’s ability to supply  

Figure 1-1.  An Enterprise’s Visibility, Understanding, and Control of Its SSC Decrease With Each Layer of the Broader Development 
Community’s Involvement (Source:  Boyens et al. [6]).
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vaccines to the U.S. Centers for Disease Control 
and Prevention [9].  By 2020, the “SolarWinds” 
cyberattack, which originated from the Russian 
Foreign Intelligence Service, similarly penetrated a 
wide array of networked systems, primarily within 
the U.S. federal government.  After being injected 
with backdoor code, a routine software update 
package for a technology administration suite was 
widely downloaded; worse, the compromise went 
undetected for nearly 12 months [10].

1.2  SSCS AND THE DEFENSE INDUSTRIAL BASE

The DoD acquires software products and systems, 
professional services, and the supporting hardware 
and computing power needed for operation  
much in the same way it obtains crates of  
5.56-mm rifle ammunition—mostly purchasing 
them from private firms and other public or 
nonprofit suppliers.  Generally known as the 
Defense Industrial Base (DIB), this collection of 
organizations, facilities, and resources provides 
the DoD with hundreds of billions of dollars of 
products and services each year and represents 
the nation’s enduring industrial and economic 
might [11].  The broad magnitude and scope of 
the DoD’s acquisition activities means that more 
than 1 million workers and around 60,000 firms 
can be considered part of the DIB [11].  While many 
of these firms do not directly shape or influence 
the development of software products that enter 
militarily-relevant SSCs, every single entity (even 
those that only produce hardware, like 5.56-mm  
cartridges) uses software platforms that are 
vulnerable to penetration.

The DIB’s immense scope and wide reach into 
suppliers and subcontractors make the defense 
of its SSCs an immense task.  Two longstanding 
vulnerabilities further complicate this challenge:

1. The production of microelectronics, once 
common in the United States, has been mostly 
offshored to international producers, limiting 
government security oversight.  (Enactment 

of the $54-billion federal “Creating Helpful 
Incentives to Produce Semiconductors (CHIPS) 
Act of 2022” is aimed at reversing this trend [12].)

2. “The growing complexity” of the electronics, 
platforms, and architectures that DIB-produced 
and DoD-operated systems depend upon 
makes SSC security an utterly overwhelming 
task.  Both a “lack of traceability” and the need 
for persistent, “continuous monitoring” by the 
DoD of vendors and components in the DIB are 
key limiters in comprehensively securing SSCs 
within the national security and homeland 
defense space [13].

Along with the centrality of software to DoD 
operations, these two vulnerabilities have made 
penetration of SSCs within or adjacent to the DIB, 
as well as the intelligence community at large, a 
key objective for adversarial action [14].  In the past 
5 years, military analysts have witnessed an uptick 
in attempts to penetrate defense-related SSCs, 
with a particular eye toward gaining direct control 
over DoD systems and other critical infrastructure 
to disable them in the event of armed conflict.  In 
September 2019, hackers attacked the SSCs of 
four subcontractors working for Airbus, a major 
aeronautics firm that supplies the DoD with sensing 
systems as well as airframes [15].  In May 2023, a 
multi-agency joint advisory warned that a hacking 
group sponsored by the People’s Republic of China, 
known as Volt Typhoon, had penetrated electrical 
systems in the homeland and in the U.S. territory  
of Guam—a key strategic site for operations in  
the U.S. Indo-Pacific Command [16].  Further 
complicating the daunting task of SSC security  
is the hodgepodge of systems, software vintages,  
and architectures that the DoD employs; each 
service branch largely operates its systems and 
networks separately from the others.  Unifying a 
software security posture across the department 
has been likened to “assembling a puzzle with 
pieces from different sets” [17].
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1.3  SECURING SSC

Both the DoD and the broader federal national 
security enterprise have responded to assess 
the vulnerability of their systems to SSC exploits 
and secure the broader software development 
and production communities that support 
government operations.  For example, in July 
2023, new administrative policies promulgated 
in the U.S. “National Cybersecurity Strategy 
Implementation Plan” tightened the technical 
requirements that suppliers and contractors must 
meet in following cybersecurity supply chain 
risk management (C-SCRM) best practices [18].  
Operating in compliance with these best practices 
is a critical step to building trust in international 
software suppliers, as compliance makes the digital 
ecosystem more “transparent, secure, resilient, and 
trustworthy” [10].

Two months later, the DoD followed up the whole-
of-government strategy with its own DoD-specific 
cyberstrategy [19].  The document recognizes, 
at a high strategic level, the importance of 
protecting the DIB from malicious cyberattacks and 
recommends a number of procedural changes, like 
the alignment of DIB contract incentives with DoD-
specific cybersecurity requirements.  Moreover, the 
strategy points toward the usefulness of ongoing 
research and development activities that might 
increase DoD capabilities for “rapid information-
sharing and analysis” in the “identification, 
protection, detection, response, and recovery of 
critical DIB elements” [19].  The Office of the DoD 
Chief Information Officer is also working to finalize 
an enterprise-wide strategy for cyber supply chain 
risk management to guide protective actions for 
SSCs across the DoD [20].

The majority of technical guidance for securing 
SSCs across the firms and organizations that  
make up the DIB is generated by the National 
Institute for Standards and Technology (NIST).   
A longstanding federal entity originally involved 
in the standardization of weights, measures, 

and metrology measurements, NIST released 
its landmark cybersecurity framework (CSF) as 
Version 1.0 in 2014 [21].  The framework quickly 
found widespread adoption among commercial 
firms and government information technology (IT) 
departments and has been updated and expanded 
several times since [22].

At its core, the CSF details a set of best-practice 
cybersecurity activities, standardized tools, and 
references and further describes the “desired 
outcomes” of the application of the framework 
across an organization.  While NIST is not a 
traditional regulatory agency, use of the CSF has 
since become mandatory for federal agencies 
[23].  Other NIST guidance, including the “Secure 
Software Development Framework (SSDF)  
Version 1.1:  Recommendations for Mitigating 
the Risk of Software Vulnerabilities” (NIST 
Special Publication [SP] 800-218) [24] and the 
“Cybersecurity Supply Chain Risk Management 
Practices for Systems and Organizations” (NIST  
SP 800-161r1) [6], provides additional discussion  
of vulnerabilities and SSC security controls at both  
a technical and conceptual level (see Figure 1-2).

1.4  REPORT OVERVIEW

While guidance documents for the organizational 
practice of C-SCRM are very useful, they might also 
best be characterized as broad and nonspecific 
[25].  Moreover, as the volume of data and code 
that inhabit a given SSC continues to grow, entities 
like firms within the DIB would benefit greatly 
from next-generation analytical tools to identify 
potential SSC vulnerabilities and then secure them.  
Accordingly, this state-of-the-art report discusses 
the requirements, progress, and latest trends in 
using artificial intelligence (AI) tools and techniques 
to secure the defense-critical SSC.  Detection 
of SSC attacks can be accomplished through 
building AI models deployed against collected 
distributed datasets designed, developed, trained, 
and tested over useful features.  The combination 
of AI-enabled analytics with broader security 
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approaches like the current version of  
NIST CSF 1.1 [26] (Version 2.0 of the CSF [27]  
is under development) can generate a truly  
comprehensive method of securing SSCs.

This report discusses data management strategies 
and feature development as the two core 
prerequisites for robust AI model development.  
Section 2 summarizes data management 
strategies to describe the most salient aspects 
needed for robust AI model development aligned 
to SSC security.  Section 3, in surveying feature 
engineering and development, addresses the 
required understanding of SSC frameworks 
and their attributes upon which AI models will 
be trained.  Section 4 explores how AI models 
can enhance software code reliability, integrate 
with blockchain technology, and improve SSC 
vulnerability analysis and detection.  Overall, this 

report discusses the performance of AI models 
across all phases of SSC analytical processing, 
where it may lead to faster predictions and 
enhanced integration with security operations 
workflows.

Figure 1-2.  Cybersecurity Risks Throughout the Supply Chain (Source:  Boyens et al. [6]).
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SECTION

02
The development of AI-enabled models is 
predicated first upon the use of robust and 
best-practice-compliant data management 
practices.  The processes of data collection, 
aggregation, storage, and organization are key 
enablers of engineering (or developing) features 
targeted at the phenomena that will provide 
the largest benefits to early detection of SSC 
compromises.  For instance, the use of packages 
from public component registries, if not carefully 
monitored, can introduce significant vulnerabilities 
to an SSC.  Data provided by Sonatype, an SSC 
management company, reveal that the count 
of malicious packages identified across diverse 
open-source ecosystems in 2023 has tripled 
compared to the previous year [28].  That increase, 
in turn, comes on the heels of a staggering 650% 
year-on-year increase in security attacks exploiting 
vulnerabilities in open-source software’s supply 
chain in 2021 [29].

2.1  OPEN-SOURCE PACKAGES

This rapid rate of expansion is truly remarkable, 
emphasizing the supply chain’s emergence as one 
of the fastest-growing avenues for malevolent code 
execution.  The widespread use of open-source 
packages in particular threatens to introduce 
vulnerabilities (or compromises) into a single SSC or 
multiple-linked, interdependent SSCs, with harmful 
ramifications that can cascade both upstream and 
downstream of a penetration [30] (see Figure 2-1).  
Without greater vision into the full reach of an SSC,  
benevolent actors are limited in the measures 

available to them to mitigate risk or employ 
countermeasures in a timely fashion.

Virtually all modern software relies heavily on prior 
innovations distributed freely and made accessible 
by the world’s most skilled experts.  This invaluable 
foundation is offered to developers at no cost.  As  
a result, it is often estimated that as much as 90% 
of the code utilized in software production systems 
is derived from open-source origins.  However, a 
substantial number of open-source programming 
language repositories are maintained by the open-
source community in a voluntary, part-time, and 
often haphazard manner [28].  While efforts have 
been made to prevent the hijacking of existing 
developer accounts for the dissemination of 
malicious components (such as the introduction  
of mandatory multifactor authentication), this  
does not fully deter attacks involving the upload  
of rogue packages from new accounts.

DATA 
MANAGEMENT 

STRATEGIES

Figure 2-1.  An SSC With Focus on a Single Link; Systemwide Security 
Depends on Upstream/Downstream Transparency, Link Validity, and 
Logical Separation Between Components and Links (Source:  Okafor 
et al. [30]).
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Few, if any, automated detection techniques 
are currently in place (much less actively used in 
practice), and the volunteer-based vulnerability 
removal procedures used by many community 
repositories are slow, cumbersome, and grossly 
inefficient when facing code intentionally designed 
to be malicious from the outset.  Sonatype 
emphasizes the fact that packages harboring 
malicious code are often treated similarly to 
packages with new security vulnerabilities.  This 
practice can allow malicious packages to persist 
longer than necessary, exposing developers to  
risks [28].

The potential of generative AI in software 
development is undeniably promising, but it 
does come with its set of challenges, both real 
and perceived.  Significantly, a full 61% of the 
developers polled by Sonatype in 2023 view 
generic AI technology as “overhyped,” while only 
37% of IT security leads feel the same.  While a 
majority of respondents currently utilize AI to 
varying degrees, that use is not always driven 
by personal preference.  An astonishing 75% of 
both groups acknowledge feeling pressure from 
their organization’s leadership to embrace and 
deploy AI technologies, as leadership typically 
stresses AI’s productivity-enhancing capabilities 
over its associated potential security concerns 
[28].  However, it is likely that applying specific 
targeted AI models to the task of SSC vulnerability 
monitoring will minimize this skepticism, as AI 
moves from a nebulous technological concept to 
a series of discrete, defined, and useful software 
tools.

To proactively address the issue of open-source  
compromises, robust AI models can be implemented  
to support the prediction of package vulnerabilities 
that are susceptible to high-risk supply chain 
attacks.  In 2022, Zahan et al. [29] focused on 
assisting software developers and security experts 
in assessing signals of weakness in the npm supply 
chain to prevent future attacks by conducting 
empirical investigations into npm package 

metadata.  The authors scrutinized the metadata 
of 1.63 million packages, applying 6 indicators of 
compromise (IoC) of SSC security vulnerabilities.  
These include an expired maintainer domain, 
installation scripts, unmaintained packages, too 
many maintainers, too many contributors, and 
overloaded maintainers [29].

These IoCs can be used both to structure SSC data 
and formulate feature engineering approaches 
for AI models equipped to detect SSC attacks.  
One of the case studies used by the authors [29] 
identified more than 10 malicious packages using 
the installation script indicator.  Furthermore, they 
discovered over 2,800 maintainer email addresses 
that were associated with expired domains— 
a vulnerability that could potentially enable an 
attacker to hijack over 8,000 packages by way 
of compromising npm accounts.  The software 
development community provided positive 
feedback for the use of these IoCs as “weak link 
signals” or indicators.  A survey completed by  
470 npm package developers found greater than 
50% support of responses for the use of 3 of the  
6 IoCs:  an expired maintainer domain, installation 
scripts, and unmaintained packages [29].

2.2  ATTACK SURFACE MANAGEMENT AND 
THREAT MODELING

Software package vulnerabilities are a significant 
contributor to the overall risk associated with 
software security.  Eliminating all vulnerabilities 
is both impossible and impractical, as they 
can potentially lead to security risks in the 
SSC.  Nevertheless, effective strategies exist for 
reducing and managing these risks.  Two of the 
most effective strategies for managing supply 
chain security risks are known as “attack surface 
management” and “threat modeling.”

The task of controlling attack surfaces involves 
assessing and managing the system entry points 
that attackers could exploit to compromise a 
system.  Doing so helps to identify vulnerabilities 
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in either the system’s design or implementation 
that might be particularly susceptible to malign 
action [31].  Threat modeling, on the other hand, 
is the process of analyzing and understanding the 
characteristics and scope of potential threats to a 
system—a key input to which is an assessment of 
its prime attack surfaces (see Figure 2-2) [31].  Both 
approaches are valuable to perform throughout 
the entire software lifecycle, from development  
and deployment to ongoing maintenance.

From an attack surface perspective, open-source 
code compromises transpire when malicious actors 
infiltrate publicly accessible code repositories 
and insert harmful code for public consumption.  
Unsuspecting developers—in their understandable 
search for freely available code snippets to fulfill 
specific functions—unwittingly incorporate these 
tainted elements into their third-party code.

One salient example dates back to 2018 and 
involved the detection of malevolent Python 
libraries on the official Python Package Index.  
Employing what is known as “typosquatting” 
tactics, the attacker fashioned libraries with names 
like “diango,” “djago,” and “dajngo,” mimicking 
the common and much sought-after Python 
library correctly spelled as “django.”  To aid in the 
persistence of their propagation across linked  
SSCs, these deceptive libraries replicated the 
genuine code and functionality of their genuine 
counterpart but harbored additional features, 
such as the capability to establish boot persistence 
and create a reverse shell on remote workstations.  
Notably, open-source code compromises can also  
affect privately owned or enterprise software, 
since developers of proprietary code frequently 
incorporate open-source elements into their  
products [32]—sometimes even if their 
organization’s security policy prohibits it.

Figure 2-2.  Data Flow Diagram of an Example Attack Surface (Source:  Ellison et al. [31]).
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Because an SSC’s attack surface can admit a diverse 
and wide range of vulnerabilities, the ramifications 
of an SSC compromise can be dire.  Initially, threat 
actors seek to exploit the “gaps” in a compromised 
software vendor to secure privileged and persistent 
access to a victim’s network.  By attacking an 
outside or third-party software vendor as part of 
their effort to target another organization, bad 
actors circumvent outer security measures like 
border routers and firewalls, thereby gaining an 
initial foothold.  In the case of network access loss, 
threat actors can often simply re-enter the system 
through the compromised vendor.

While the process of gaining initial access is 
generally indiscriminate, threat actors often 
exercise discretion in selecting targets for 
subsequent actions.  These follow-on actions 
exhibit considerable variability; however, they 
frequently commence with the insertion of 
tailored malware packages into a chosen target.  
Depending on the threat actor’s intent and 
capabilities, this added malware may enable the 
attacker to conduct a variety of malicious activities, 
to include data or financial theft; surveillance of 
organizations or individuals; network or system 
disruption; or, in extreme cases, even physical harm 
or loss of life.

Those who work to defend friendly networks are 
limited when attempting to promptly mitigate  
the repercussions of an SSC compromise.  This 
stems from the fact that organizations seldom  
have full control over their entire SSC, lacking  
the authority to compel each participant in the 
supply chain to swiftly undertake mitigation 
measures.  Recognizing the challenge of  
mitigating postattack consequences, it is 
imperative for network defenders to proactively 
adopt and adhere to industry best practices.  
Implementation of these practices can only 
improve or enhance an organization’s capacity  
to prevent, mitigate, and respond to such attacks.

Examining the attack surface and following 
known risk assessment methodologies (like threat 
modeling) are essential practices for mitigating 
SSC security risks.  Nevertheless, it is crucial to 
acknowledge that these analyses are not static 
entities.  Attackers have the capability—and are 
highly motivated—to introduce novel techniques 
that may infect software or code snippets that had 
previously been considered secure.  Consequently, 
the assessment of the attack surface and its 
corresponding threat models should undergo 
periodic reviews via human-in-the-loop workflows 
and/or automated processes.  The frequency of 
these reviews should be particularly heightened 
when dealing with emerging technologies 
(including the use of AI by third-party code-
development processes elsewhere) and could  
align with the training, testing, and deployment  
of AI development lifecycles.

By their nature, new technologies may possess 
undocumented vulnerabilities (e.g., zero-days) 
because they lack an extensive history of known 
exploits, which would otherwise be used to 
inform threat modeling and other security risk 
assessment techniques.  More frequent reviews 
are thus necessary to adapt to this evolving threat 
landscape.  One such response might increase 
the frequency of internal system/enterprise 
scanning to detect abnormal behavior.  In this use 
case, AI models can be developed and trained to 
specifically alert to such anomalies.

Both the frequent recalibration of the scope of 
security assessments and the behavior-based 
AI models can significantly aid the collection of 
essential information for organizational leaders  
to prioritize the means for their SSC security.  Note 
that the security risks addressed by threat modeling 
and attack surface analyses differ significantly from 
those addressed by more traditional infrastructure 
security mechanisms, such as firewalls, 
authentication methods, and access control 
mechanisms.  These infrastructure mechanisms 
primarily focus on preventing unauthorized access 
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to system resources.  However, as systems continue 
to grow increasingly interconnected, and as 
security vulnerabilities in network and operating 
systems are reduced, application software is likely 
to emerge as the next most promising attack target 
for malign actors [31].

2.3  APPLICATION CODE SECURITY

The importance of application code security is 
often overlooked relative to SSC security, due to 
the assumption that standard network perimeter 
defenses (like network firewalls) can effectively 
block malicious access [31, 33–35].  However, 
application code itself can become a significant 
source of security risk, especially in complex 
software-use environments that have a wide 
and diverse user base, typically located across 
different organizations and partners.  This potential 
weakness is exacerbated by the fact that many 
application-build personnel have not received 
adequate training in the practices of secure 
software development, making them unaware of 
the security risks of the design-and-coding choice 
made.

The oversight of application code security, however,  
is starting to be addressed.  Numerous large-scale  
initiatives within organizations as diverse as banks, 
embedded systems manufacturers, software 
vendors, and military service branches like the  
U.S. Air Force are underway to enhance their 
overall software security via better application 
code management.  These efforts follow a number 
of different cybersecurity frameworks, including 
SAFECode, the Building Security in Maturity Model 
(better known as BSIMM), the Software Assurance 
Processes and Practices Working Group, and 
the Software Assurance Maturity Model (known 
as SAMM) by the Open Worldwide Application 
Security Project (or OWASP) [34, 36].  Additionally, 
resources like the “build-security-in” website offer 
a host of valuable reference materials on software 
security practices for IT managers.

One noteworthy development is the increased 
use of fuzz testing, a technique that purposely 
uses malformed data to observe how applications 
respond to it.  Unexpected application failures 
resulting from the ingest of malformed data 
can help to flag potential reliability and security 
issues.  To date, fuzz testing has proven effective 
not only for security professionals but also for 
malign attackers themselves (for instance, in 2009, 
a fuzz testing tool was used by hackers to detect 
an exploitable defect in widely used extensible 
markup language [better known as XML] libraries).

2.4  NIST CYBERSECURITY FRAMEWORK

The inception of the NIST CSF can be traced back 
to Executive Order 13636, which was issued on 
12 February 2013 [37].  Titled “Improving Critical 
Infrastructure Cybersecurity,” the order marked 
the commencement of a number of endeavors 
on the federal level to facilitate the exchange of 
cybersecurity threat information and establish 
a comprehensive framework for mitigating 
cybersecurity risks.  After CSF Version 1.0’s release 
in 2014 [21], it was updated to Version 1.1 in 2018 
[26].  At the time of writing, NIST had released a 
draft version of CSF 2.0 [27], which it intends to 
implement in the near future after first gathering 
and addressing feedback from key stakeholders 
and users [38].  Version 2.0 aims to be a “major 
update,” as NIST describes it, expanding its 
coverage beyond critical infrastructure alone 
and broadening its scope to incorporate new 
technological developments and emerging  
issues like SSC security and ransomware [38].

The NIST CSF provides high-level guidance, 
developed through active engagement with, 
and valuable input from, stakeholders across 
government, industry, and academia.  The 
CSF defines common terminology to promote 
homogeneity across organizations and harmonizes 
a number of pre-existing cybersecurity standards, 
guidelines, frameworks, and best practices into a 
systematic methodology to manage cybersecurity 



2-6

State-of-the-A
rt Report: SEC

TIO
N

 2

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A.  Approved for public release:  distribution unlimited.

risk [38].  CSF Version 1.1 classifies these 
management activities into one of five “framework 
functions:”  (1) Identify, (2) Protect, (3) Detect,  
(4) Respond, and (5) Recover [26].  CSF Version 2.0 
will add a sixth function:  “Govern” (see Figure 2-3) 
[27].  Subordinate to the functions are numerous 
categories of actions (e.g., Protect > Awareness 
and Training) followed by subcategories, along 
with a number of informative references for each.  
In CSF Version 1.1, the “ID.SC” category represents 
activities for supply chain risk management under 
the identify function; at the subcategory level, this 
translates into five groups of SSC security activities 
(see Table 2-1).  When collectively followed, these 
represent the essential (but notably, minimum) 
actions required to achieve effective C-SCRM [26].

Different aspects of a software product’s 
distribution drive the requirements for SSC 
security readiness, but many are based on data 
management and/or cybersecurity best practices.  
Regarding data, the Data Management Body of 
Knowledge (known as DMBoK) can be used to 

transform an existing organization’s perspective 
on how internal data assets are managed.  (Internal 
assets can include but are not limited to the 
formalization of an accessible and usable data lake 
[loosely defined as a logical collection of data that  
is accessible but not overly structured] in addition 
to addressing the core requirements needed for 
SSC security.)  To achieve this, current practices 
involve technology components like a data lake 
and are accompanied by data science “hooks”  
to enable model curation, development,  
and/or model development [39].

Despite the comprehensive protective nature of 
the CSF guidelines, it is evident that they alone are 
insufficient for some mission-critical SSCs, including 
many of those within the DIB.  Rapid changes in the 
landscape of software security further underscore 
the need to go beyond perimeter defenses, threat 
modeling, and other traditional measures.  SSC 
security demands the careful collection and 
continuous management of data sources so that 
AI models can build robust feature engineering 
methods into powerful AI models to detect SSC 
anomalies (i.e., those with strong performance 
metrics like accuracy, precision, and F1).  AI-enabled 
tools will aid DIB entities to anticipate, infer, predict, 
correlate, and pinpoint potential vulnerabilities, 
potential intrusion routes, and attack vectors within 
software embedded in SSCs [39].

Figure 2-3.  The Six Main Pillars of a Successful Cybersecurity 
Program, as Reflected in the NIST CSF Version 2.0 (Draft)  
(Source:  NIST [38]).



2-7

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

  S
EC

TI
O

N
 2

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A.  Approved for public release:  distribution unlimited.

Table 2-1.  NIST Guidance for Organizational Supply Chain Risk Management Under the “Identify” Function of the NIST CSF Version 1.1

Category Subcategory Informative References

Supply Chain Risk 
Management (ID.SC):

The organization’s priorities, 
constraints, risk tolerances, 

and assumptions are 
established and used to 
support risk decisions 

associated with managing 
supply chain risk.   

The organization has 
established and  

implemented the processes 
to identify, assess, and 

manage supply chain risks.

ID.SC-1:  Cyber supply chain 
risk management processes are 
identified, established, assessed, 

managed, and agreed to by 
organizational stakeholders.

CIS CSC 4
COBIT 5 APO10.01, APO10.04, APO12.04, APO12.05, 
APO13.02, BAI01.03, BAI02.03, BAI04.02
ISA 62443-2-1:2009 4.3.4.2
ISO/IEC 27001:2013 A.15.1.1, A.15.1.2, A.15.1.3, 
A.15.2.1, A.15.2.2
NIST SP 800-53 Rev. 4 SA-9, SA-12, PM-9

ID.SC-2:  Suppliers and third-party 
partners of information systems, 

components, and services are 
identified, prioritized, and assessed 

using a cyber supply chain risk 
assessment process.

COBIT 5 APO10.01, APO10.02, APO10.04, APO10.05, 
APO12.01, APO12.02, APO12.03, APO12.04, 
APO12.05, APO12.06, APO13.02, BAI02.03
ISA 62443-2-1:2009 4.2.3.1, 4.2.3.2, 4.2.3.3, 4.2.3.4, 
4.2.3.6, 4.2.3.8, 4.2.3.9, 4.2.3.10, 4.2.3.12, 4.2.3.13, 
4.2.3.14
ISO/IEC 27001:2013 A.15.2.1, A.15.2.2
NIST SP 800-53 Rev. 4 RA-2, RA-3, SA-12, SA-14, 
SA15, PM-9

ID.SC-3:  Contracts with suppliers 
and third-party partners are used to 

implement appropriate measures 
designed to meet the objectives 

of an organization’s cybersecurity 
program and cyber supply chain risk 

management plan.

COBIT 5 APO10.01, APO10.02, APO10.03, APO10.04, 
APO10.05
ISA 62443-2-1:2009 4.3.2.6.4, 4.3.2.6.7
ISO/IEC 27001:2013 A.15.1.1, A.15.1.2, A.15.1.3
NIST SP 800-53 Rev. 4 SA-9, SA-11, SA-12, PM-9

ID.SC-4:  Suppliers and third-party 
partners are routinely assessed 

using audits, test results, or other 
forms of evaluations to confirm 

they are meeting their contractual 
obligations.

COBIT 5 APO10.01, APO10.03, APO10.04, APO10.05, 
MEA01.01, MEA01.02, MEA01.03, MEA01.04, 
MEA01.05
ISA 62443-2-1:2009 4.3.2.6.7
ISA 62443-3-3:2013 SR 6.1
ISO/IEC 27001:2013 A.15.2.1, A.15.2.2
NIST SP 800-53 Rev. 4 AU-2, AU-6, AU-12, AU-16,  
PS-7, SA-9, SA-12

ID.SC-5:  Response and recovery 
planning and testing are conducted 

with suppliers and third-party 
providers.

CIS CSC 19, 20
COBIT 5 DSS04.04
ISA 62443-2-1:2009 4.3.2.5.7, 4.3.4.5.11
ISA 62443-3-3:2013 SR 2.8, SR 3.3, SR.6.1,  
SR 7.3, SR 7.4
ISO/IEC 27001:2013 A.17.1.3
NIST SP 800-53 Rev. 4 CP-2, CP-4, IR-3, IR-4,  
IR-6, IR8, IR9

Note:  CIS = Center for Internet Security, CSC = Critical Security Control, COBIT = Control Objectives for Information and Related Technology,  ISA = International 
Society of Automation, ISO = International Organization for Standardization, IEC = International Electrotechnical Commission.  CIS CSC 4 [40], COBIT 5 [41],  
ISA 62443-2-1:2009 [42], ISO/IEC 27001:2013 [43], NIST SP 800-53 Revision 4 [44], ISA 62443-3-3:2013 [45], CIS CSC 19 [46], CIS CSC 20 [47].  As CSF Version 1.1 
was released in 2018, some of the mentioned references may have been updated/revised.  NIST maintains a live website that is consistently updated and can  
be used as a guide when searching for specific information [48].
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SECTION

03
In addition to Executive Order 14028 (12 May 
2021) [49], which bolstered federal cybersecurity 
information-sharing requirements and imposed 
baseline security standards on government 
contractors, several other government initiatives 
and industry forums have recently addressed 
security assurance measures for bolstering the 
security of SSCs and all deployed software.  One 
other NIST initiative, reflected in an August 2023  
initial public draft titled “Strategies for the 
Integration of Software Supply Chain Security in  
DevSecOps CI/CD Pipelines” (NIST SP 800-204D, 
initial public draft), addresses multiple 
microservices, which are regarded as the 
“predominant” application architecture for  
cloud-native applications [39].

3.1  SECURE SOFTWARE UPDATES:  
DEVELOPMENT, SECURITY, AND OPERATIONS 
(DEVSECOPS); ARTIFICIAL INTELLIGENCE FOR 
INTERNET TECHNOLOCY OPERATIONS (AIOPS); 
AND MACHINE LEARNING OPERATIONS 
(MLOPS)

Cloud-native applications consist of multiple 
loosely connected components referred to as 
microservices.  These software components 
follow an agile software development life cycle 
(SDLC) methodology known as DevSecOps, which 
employs continuous integration/continuous 
delivery (CI/CD) pipelines to streamline the 
development process.  The security and integrity 
of these individual operations can significantly 
impact the overall security of an SSC, with threats 

potentially emerging from malicious actors’ 
attack vectors or lapses in due diligence at nearly 
any point in the SDLC.  Seamlessly integrating 
the diverse elements of SSC security assurance 
into CI/CD pipelines, as well as equipping 
organizations to effectively address SSC security 
during development and deployment, is central 
to defending cloud-native applications from 
penetration or SSC compromise [39].

NIST SP 800-204D makes it exceptionally clear that 
an essential component of any SSC is the software 
update process, one that is typically managed by 
specialized software development tools known 
as “software update systems” [39].  Maintaining 
the security and continuous monitoring of 
these update systems is absolutely paramount 
in ensuring the overall security of the SSC.  The 
core function of a software update system is to 
identify the necessary files for a given update 
request and securely download those trusted files.  
Threats targeting software update systems focus 
predominantly on attempting to compromise the 
evidence generation process to cover their tracks, 
making it even more challenging to ascertain the 
legitimacy of updates.

Initially, it might seem that establishing trust in 
downloaded files only requires the execution 
of integrity and authenticity checks, conducted 
via the verification of file signatures and other 
associated metadata.  However, the process of 
generating signatures itself is susceptible to known 
attacks (at minimum); this standing vulnerability 

FEATURE 
DEVELOPMENT
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necessitates the imposition of additional security 
measures related to both signature generation and 
verification.

MLOps encompasses a set of methodologies that 
integrate the development and operational aspects 
of machine learning (ML) systems.  The primary 
objective of MLOps is to optimize the entire 
lifecycle of ML, spanning from initial development 
and deployment to continuous monitoring and 
maintenance.  In contrast to conventional software 
development (wherein development operations 
[known as DevOps] emphasize collaboration 
between developers and IT operations for 
automating and enhancing software delivery 
efficiency), MLOps extends these principles to  
the domain of ML and the powerful analytical  
tools that the ML space promises.

This extension acknowledges and addresses the 
distinctive challenges and prerequisites inherent  
to ML systems.  The evolving security framework for 
integration of SSC security using DevSecOps CI/CD 
pipelines for software update systems laid out in 
NIST SP 800-204D has incorporated many of these 
essential security measures into its specifications 
and has recommended others for future 
implementations.  This framework encompasses 
a collection of libraries, file formats, and utilities 
designed to enhance the security of both existing 
and new software update systems [39].

3.2  PUSH PROTECTION

A crucial security practice within an SSC during 
code commits involves preventing the inclusion of 
sensitive information within committed code.  This 
safeguard is achieved through a scanning process 
designed to identify secrets, resulting in a feature 
known as “push protection.”  SSC security measures 
also extend to controls implemented during the 
continuous delivery process.  For instance, one 
common control used during deployment is to 
verify whether the container image has been 
scanned for vulnerabilities and, if so, whether any 
vulnerabilities have been confirmed.

Following such an approach empowers 
DevSecOps teams to proactively maintain a 
secure container environment.  It helps to ensure 
that only validated containers gain entry and 
assists overall in maintaining user trust during run 
time.  This should also extend to the operational 
framework in support of AI model deployments 
typically relegated to AI practices.  Implementing 
DevSecOps for AI (also called AIOps) enables 
streamlining and efficiency during the (re)training, 
(re)testing, and (re)deployment of AI models and 
is especially critical for those making behavior-
based predictions of SSC threats.  Furthermore, 
AIOps encourages a containerization approach, 
assuring that image deployment decisions 
align with organization-defined policies.  Such 
alignment at run time must be achieved to prevent 
defects, vulnerabilities, and bad code from being 
introduced into models and/or software.  These 
policies serve as the criteria for allowing or blocking 
the deployment of images, contributing to a robust 
security posture.

3.3  OTHER SSC FRAMEWORKS

Executive Order 14028 [49] (discussed previously) 
was prompted in part after a number of notable 
security breaches (including the SolarWinds hack 
discussed in Section 1.1) were met by a rising 
overall threat level posed by malicious cyberactors 
targeting software developers and contributors.  
The order entrusts various groups with the task of 
formulating new software security standards, tools, 
and best practices, and critically, it introduces a new 
category of “critical software,” the precise definition 
of which has yet to be determined.

The order also removes certain barriers that 
hindered the sharing of cybersecurity threat 
information among government agencies.   
Beyond enhancing the cybersecurity of federal 
government systems, it urges private businesses 
and academia to elevate SSC security by adhering 
to the guidelines set forth by NIST.  Furthermore, 
it has established a review board to evaluate and 
assess cybersecurity incidents and a playbook was  
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devised to govern the federal government’s 
response to such incidents.

3.3.1  General Frameworks

Of particular significance to the software 
development field is the requirement for 
federal agencies to implement “zero trust” 
architectures, expedite the transition to secure 
cloud environments, and adopt additional 
data protection capabilities, along with related 
endpoint detection, response, and logging 
measures to mitigate ongoing supply chain risks.  
For businesses, the most notable aspect is the 
commitment to introducing new best practices 
and standards for SSCs.  At the time of the order’s 
issuance, it became evident that new compliance 
standards were on the horizon, though the exact 
form they would take was still unclear [49].  What 
has transpired is the evolution of a relatively recent 
concept known as a software bill of materials 
(SBOM), or an obligation to partake in vulnerability 
disclosure programs, and a requirement to 
demonstrate adherence to the best security 
practices.

The in-toto framework (intoto.io [50]) is a system 
designed to secure the entire SSC, encompassing 
the development, building, testing, and packaging 
processes.  It provides attestation of integrity 
and verifiability for each action performed 
throughout the supply chain, including code 
writing, compilation, testing, and deployment.  The 
framework ensures transparency by disclosing the 
order of steps and the actors involved.  According 
to in-toto, the framework enables users to verify the 
intended execution of each step, authenticate the 
actors involved, and ensure that materials (such as 
source code) remain untampered between steps.

The Update Framework (TUF) empowers 
developers to safeguard update systems against 
repository compromises and attacks that focus 
on signing keys.  TUF offers a robust approach to 
provide trust information about software, including 

meta-information about artifacts.  Its primary 
objective is to authenticate the source of data 
stored in repositories.  Additionally, TUF verifies 
the freshness of artifacts and maintains repository 
consistency, which are crucial steps for ensuring 
overall integrity and security in SSCs.  TUF aims 
to prevent malicious behavior where attackers 
manipulate software artifacts in a way that the 
combined result becomes malicious [14].

The Open Software Supply Chain Attack Reference 
(OSC&R) provides objective insights into the 
target of an attack and its current phase.  This 
perspective offers a holistic narrative that simplifies 
communication about security throughout an 
organization; delivers comprehensive visibility 
into coverage; and allows teams to assess potential 
impacts on the organization, evaluate the 
effectiveness of existing protective measures  
and controls, and prioritize responses.

3.3.2  SBOM and Pipeline Bill of Materials 
(PBOM)

While the concept of a bill of materials (BOM) 
outlining the components and their sources within 
a product is not novel, the novelty lies in devising a 
standard to apply to software and SSCs nationwide.  
Numerous manufacturing companies are already 
obligated to furnish a BOM detailing every 
component of a product, along with the original 
manufacturers in cases where they originate from 
third-party sources.

An application of BOMs familiar to the average 
consumer is for automobile vehicle recalls.  In the 
event of a defective component, manufacturers 
can promptly identify the specific part and its 
source and determine how to rectify or replace it.  
This principle also applies to SBOMs, which offer 
a comprehensive inventory of all elements within 
the software, encompassing open-source libraries, 
third-party components, and proprietary code.   
This transparency assists organizations in 
managing their supply chains, proactively 
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identifying vulnerabilities, and responding  
more swiftly to security incidents.  The use of 
SBOMs promises to ensure high-quality code, 
regulatory and security compliance, and  
protection against threats and vulnerabilities 
through the maintenance of an always-up-to- 
date and comprehensive BOM.

An SBOM functions similarly to a list of ingredients 
on food packaging, declaring the inventory of 
components used in constructing a software 
artifact, such as a software application.  Just as 
individuals consult food labels to avoid allergenic 
ingredients, SBOMs aid organizations or individuals 
in steering clear of software that may pose risks [51].   
In contrast to an SBOM, a PBOM goes beyond this 
inventory by informing users about whether other 
products produced in the same pipeline, using 
similar machinery, or within the same production 
facility contain potential vulnerabilities or risks [51].  
PBOMs offer a comprehensive view, examining 
the entire pipeline from the design phase to 
production.  This thorough assessment enhances 
the ability to avoid using harmful software by 

considering all the stages where a security breach 
could occur.  PBOMs excel at helping users steer 
clear of potentially unsafe software because they 
scrutinize all stages where vulnerabilities or attacks 
might occur, as depicted in Figure 3-1.

These approaches provide guidelines, insights, 
communication, and declarations for trackable 
and referenceable artifacts as inputs in support of 
security of SSCs from one or many of these sources 
to determine possible anomalies in source, build, 
availability, and/or distribution of software.

3.3.3  Supply Chain Levels for Software Artifacts 
(SLSA)

SLSA is a framework designed to categorize various 
software artifacts within a supply chain, based on 
their integrity level [52].  In the context of SLSA, 
“integrity” signifies the confidence that a software 
artifact has not been tampered with or altered  
in an unauthorized manner, ensuring it remains  
in its original and intended state.  On the other 
hand, the OSC&R framework offers a systematic  

Figure 3-1.  Build Platform Workflow for Provenance, as Attestation of Created Artifacts in Support of SSC Security (Source:  The Linux 
Foundation [52]).
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and actionable approach to comprehending 
attacker behaviors and techniques employed  
in compromising the SSC [50].

Supply chain threats take on different 
characteristics that are incorporated into 
mitigations with SLSA Version 1.0 [52].  The  
four threats are:  (1) sources, (2) dependencies,  
(3) builds, and (4) availability/verification.

Source integrity threats involve the potential 
for an adversary to tamper with the source code 
of a software product, making unauthorized 
changes [52].  They can also encompass insider 
threats, where authorized individuals introduce 
unauthorized changes.  Dependency threats 
involve adversaries introducing malicious behavior 
into a software artifact by targeting its external 
dependencies.  SLSA helps mitigate these threats 

when one verifies the provenance (origin and 
authenticity) of dependencies using the SLSA 
framework.  Build threats pertain to adversaries 
potentially introducing malicious behavior into a 
software artifact without changing its source code.  
They also include situations where artifacts are built 
from unintended sources or dependencies.  The 
SLSA build track can help mitigate these threats by 
allowing consumers to verify that received artifacts 
were built as expected (see Figure 3-2).  Finally, 
availability threats involve adversaries attempting 
to deny access to source code or the ability to build 
a package, effectively disrupting the availability of 
software resources [52].

The SLSA framework outlines specifications 
for distributing provenance information and 
further defines the connection between build 
artifacts and their associated provenance (known 

Figure 3-2.  SLSA Approach to SSC Threats and Mitigations (Source:  The Linux Foundation [52]).
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as build attestations) [38].  Its primary focus is 
on ecosystems that distribute build artifacts, 
although it also extends its attention to ecosystems 
distributing container images or solely providing 
source artifacts.  Many of the core principles within 
SLSA are applicable to various types of artifacts.  
To ensure that provenance information remains 
accessible for verification after artifact generation, 
SLSA mandates the distribution and verification 
of provenance metadata in the form of SLSA 
attestations.

Within this framework, it is the responsibility of 
the package ecosystem to make its expectations 
available to consumers, reliably redistribute both 
artifacts and their associated provenance, and 
furnish the necessary tools for secure artifact 
consumption.  The “package ecosystem” denotes 
a set of rules and conventions governing the 
distribution of packages.  It is important to 
note that every package artifact belongs to an 
ecosystem, whether formal or informal.  Many 
ecosystems are informal, while some ecosystems 
are formally recognized, such as those governing 
language (e.g., Python/Python Packaging 
Authority), operating systems (e.g., Debian/
Advanced Package Tool), or general artifact 
distribution (e.g., Open Container Initiative  
[known as OCI]).

Conversely, informal ecosystems can exist within 
organizations or even within ad hoc distribution 
methods like sharing software through a website 
link, all of which are considered “ecosystems” within 
the context of SLSA.  During the package upload 
process, a package ecosystem has the option to 
verify that the artifact’s provenance aligns with  
the expected values for that package’s provenance 
before accepting it into the package registry.  This 
practice is strongly recommended whenever 
feasible, as it benefits all consumers within the 
package ecosystem.

Furthermore, SLSA offers valuable insights for 
artifact distributors on how to incorporate the 

distribution of SLSA provenance effectively.  Its 
primary concern revolves around the methods 
of distributing attestations and establishing the 
relationship between attestations and build 
artifacts, rather than prescribing a specific format 
for attestations themselves.  One noteworthy 
aspect of SLSA is that it encourages attestations 
to be bound to individual artifacts rather than 
releases.  This approach acknowledges that a 
single “release” of a project, package, or library 
may encompass multiple artifacts, which in turn 
come from builds on multiple different platforms, 
architectures, or environments.  These builds may 
not necessarily occur simultaneously and can even 
span multiple days.

In many ecosystems, determining when a release 
is considered “complete” can be an exceptionally 
challenging task.  It is often permissible to add 
new artifacts to older releases during the normal 
process of adding support for new platforms 
or architectures.  As a result, the collection of 
attestations for a given release is likely to expand 
substantially over time, as additional builds and 
attestations are created and accrued.  Therefore, 
package ecosystems are advised to support 
multiple individual attestations per release, 
allowing the relevant provenance for each build 
to be associated with the release as needed, 
depending on its relationship to the associated 
artifacts.
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SECTION

04
To enhance SSC security, it is imperative to turn to 
AI-enabled models and security constructs that 
significantly improve upon the semi-automated 
(and sometimes manual) processes that are 
currently used to forecast, infer, predict, correlate, 
and identify likely weaknesses, potential attack 
vectors, and avenues of approach within SSC-
embedded software.  Promising areas within 
this task include the integration of blockchain 
technology with SSC cybersecurity frameworks, 
the use of AI-enabled models to better automate 
software vulnerability analysis, and the use of AI  
to enhance the guarantee and confirmation of  
code reliability.

4.1  AI MODELS WITH BLOCKCHAIN 
INTEGRATION WITH SSC FRAMEWORKS

One line of development meriting special 
discussion is the use of blockchain technology and 
methods for enhanced SSC security.  Blockchain 
technology offers an encrypted, peer-to-peer 
digital ledger accessible to network participants, 
whether public or private.  It establishes a 
decentralized trust system without the need for 
trusted third parties.  Within a blockchain network, 
numerous partners or nodes coexist, with each 
node possessing a copy of the maintained data.  
The data within the blockchain are structured into 
blocks, where each block comprises a collection 
of records, commonly referred to as transactions.  
These transactions are organized into a Merkle tree, 
wherein the transaction records serve as the leaves 
and each child node hash acts as an intermediary 
node.

Smart contracts function as trusted intermediaries 
positioned between blockchain clients and 
blockchain storage, enabling advanced 
functionalities.  They facilitate client requests, 
where the logic for processing services, ranging 
from simple to complex, can encompass tasks 
like validating application state, enforcing 
governance rules, or conducting credential checks.  
Smart contracts streamline interactions with the 
underlying blockchain by executing queries to 
store or retrieve data through a programmable 
interface [53–55].

Motivated from research [50, 52–55], an integrated 
SSC-blockchain platform (e.g., Let’sTrace) can 
be specifically designed to manage software 
patch releases and ensure the integrity of these 
patches through the utilization of blockchain-
based smart contracts.  The verification of patch 
integrity for software products is conducted using 
an SSC framework (e.g., TUF), and this verification 
functionality is seamlessly integrated into the smart 
contracts within the platform.  Before a patch is 
deployed, it can undergo verification through the 
platform utilities.  Additionally, all software updates 
must adhere to the SSC protocols (e.g., in-toto) and 
include relevant metadata files.

When a vendor releases a patch, it undergoes 
rigorous testing and a comprehensive summary 
is then uploaded to the platform.  This summary 
includes details such as the patch updates, affected 
software modules, and alterations in network  
traffic patterns (both incoming and outgoing) 
following the patch update.  Participating utilities  

APPLICATIONS 
OF AI
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in the platform have the capability to view and 
verify these patch updates and patch supply chain 
information using in-toto.  The platform can also 
construct AI and ML models utilizing supply chain 
data from various peers, employing a federated  
learning (FL) system.  These models can 

subsequently be integrated into blockchain smart 
contracts to enhance the verification of supply 
chain data (see Figure 4-1).

In the event that any suspicious incidents related 
to a software or patch update are detected 

Figure 4-1.  Notional Architecture of Blockchain Integrated With AI (FL) and Framework; Frameworks Provide Artifact Level Alignment  
for Distributed AI (FL) to Be Trained Over All Locations (Source:  Bandara et al. [55]).
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during the verification process, immediate 
reporting and notification to utilities and vendors 
within the platform are facilitated.  This enables 
prompt actions to be taken to mitigate potential 
vulnerabilities.  The ability to offer additional 
fidelity using annotations from PBOMs and SBOMs 
can also be used for training/testing these models 
for detection of more nuanced SSC compromises.

The immutability of blockchain provides the ability 
to perform change detection on a “true” state of 
the system that could not be altered by hackers.  
This offers the opportunity to employ a variety 
of continuous monitoring tools coupled with 
AI models to detect changes, while also storing 
alterations to references, pointers, and values 
relevant for SSC artifacts.  These artifacts could 
be driven from PBOM artifact and SBOM artifact 
annotations aligned with NIST SP 800-204D [39, 51].

In light of the escalating demand for application 
software and the industry’s race for swift code 
development, an enduring challenge remains in 
maintaining both speed and the production of 
bug-free software, particularly in the context of  
the now-common postpandemic, work-from- 
home setup where constant supervision of 
software developers is not always assured.  This 
scenario increases the likelihood of introducing 
software bugs, and traditional testing methods are  
likely to struggle in delivering optimal performance.

To address this challenge, innovative decentralized 
software testing systems that leverage AI and/or  
blockchain technologies automatically detect 
and prevent the injection of vulnerable code by 
combining the capabilities of deep learning with 
the power of smart-contract-driven blockchain.  
This approach eliminates the reliance on manually 
written rules for vulnerability detection.  The range 
of nonvulnerability scoring is broad enough that 
a discrete score effectively communicates the 
classification of the source code.  Additionally, 
integration of an InterPlanetary File System can 
ensure efficient storage within the blockchain [56].

4.2  SOFTWARE VULNERABILITY ANALYSIS 
AND DETECTION USING AI

SSC vulnerabilities deriving from software typically 
arise from design flaws or implementation 
errors, posing threats to the security of a system.  
At present, the most prevalent approach for 
identifying such vulnerabilities is known as static 
analysis.  Many existing technologies in this domain 
rely on rules or code similarity at the source code 
level, using a manually defined matching process to 
identify vulnerability features.  However, accurately 
defining and designing these rules and features 
is a significant challenge, with high labor inputs, 
lack of speed, and other considerations limiting 
the practical application of static analysis beyond 
single use cases.

To address this issue, some researchers have 
advocated for the use of neural networks, sporting 
automatic feature extraction capabilities, to 
enhance the intelligence of detection.  Yet, a wide 
variety in different types of neural networks—
and the substantial impact of different data 
preprocessing methods on model performance—
presents formidable challenges for engineers and 
researchers who would aim to select appropriate, 
much less optimal combinations to resolve a given 
problem.

Recently, researchers have conducted extensive 
experiments in this space.  Those that have 
produced the most promising results focused 
on the two most common neural networks 
(bidirectional long short-term memory [Bi-LSTM] 
and random vector functional link [RVFL]) and the 
two most classical data-preprocessing methods 
(vector representation and program symbolization) 
in the context of software vulnerability detection.  
Their findings offer valuable insights:

• RVFL consistently exhibits faster training speed 
than Bi-LSTM, while the latter boasts higher 
prediction accuracy 
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• Utilizing doc2vec for vector representation 
enhances training speed and generalization 
ability compared to word2vec

• Multilevel symbolization proves beneficial  
in enhancing the precision of neural network 
models

These lessons can serve as practical guidelines for 
both researchers and engineers in navigating the 
complexities of neural network selection and data 
preprocessing for software vulnerability detection 
[57].

The growing complexity of software applications 
and the imperative to minimize vulnerabilities 
have already spurred the creation (and limited 
adoption) of ML techniques for identifying software 
vulnerabilities in source code.  However, many of 
these existing lack the accuracy required for ready 
use in an industrial context.  One recent study [57] 
introduces a novel approach, utilizing an abstract 
syntax tree neural network (ASTNN), to identify 
and classify software vulnerabilities according 
to common weakness enumeration (CWE) types.  
The study proceedings follow two key assertions:  
(1) ASTNN outperforms previous ML neural 
network architectures, and (2) the benchmark 
dataset commonly used for ML vulnerability 
classification is inadequate for this purpose.  The 
ASTNN architecture is detailed, and an evaluation 
using over 44,000 test cases across 29 CWEs in the 
NIST Juliet Test Suite dataset yielded a minimum 
accuracy of 88% across all CWEs [58].

4.3  AI-ENHANCED CODING RELIABILITY

Especially since 2022, when large language model-
enabled AI “chatbot” interfaces began receiving an 
immense amount of interest and discussion in the 
AI space, many commercial engineers have looked 
to apply AI directly to coding practice.  Doing 
so has transformed the approach to coding that 
many take, bringing about increased efficiencies 
in static analysis, reliability, and defect reduction.  
The following examples highlight current projects 

available for download and implementation; note 
that each is likely to evolve in a dynamic fashion, 
given the current, nascent stage of AI-enabled code 
enhancement.

GitHub, a leading code hosting platform, has 
released (and also uses) CodeQL, an AI-powered 
static analysis tool for discovering vulnerabilities 
across a codebase.  CodeQL employs sophisticated 
AI algorithms to automatically identify security 
vulnerabilities in code.  Beyond detection, it also 
suggests fixes and patches, proactively addressing 
security concerns for millions of open-source 
projects hosted on GitHub.  CodeQL contributes 
significantly to the overall security of the software 
ecosystem by identifying and addressing 
vulnerabilities early in the development process.  
Using CodeQL to identify a vulnerability promises 
to eradicate it and all possible variants “forever” 
[59].

Facebook (Meta Platforms, Inc.) has developed 
Infer, an AI-based code analysis tool, to enhance 
software reliability and prevent issues from 
reaching production codebases.  Used by a wide 
array of both SSC-centric and other commercial 
entities (including Amazon Web Services, Uber, 
Microsoft, and Sonatype), Infer utilizes static 
analysis to identify various programming errors 
and potential crashes, even in complex and large-
scale codebases.  By catching bugs before they 
propagate, Infer helps to maintain high-quality and 
stable applications, reducing postrelease bug fixes.  
In addition to marketing the Infer service externally, 
Facebook runs it continuously within every 
code modification for its main user applications, 
including Facebook itself (Android/iOS), Facebook 
Messenger, Instagram, and others [60].

Developed by Google (Alphabet, Inc.), DeepCode 
AI is an AI-driven code review tool that extends 
beyond error detection.  It provides intelligent 
suggestions for code improvements, offering 
specific recommendations to developers.  
DeepCode AI analyzes code patterns, individual 
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coding styles, and best practices to assist 
developers in writing cleaner, more efficient code.  
This can not only reduce the likelihood of errors 
but can accelerate software package development 
overall by automating code enhancements.  Built 
upon multiple AI models, DeepCode AI has also 
been trained specifically on open-source code-
security data.  DeepCode is particularly valuable for 
optimizing development workflows and reducing 
coding errors, ultimately saving time and resources 
[61].

IntelliCode, developed by Microsoft and marketed 
within its Visual Studio integrated development 
environment, enhances the code review process 
by offering AI-generated code completion 
suggestions and recommendations.  IntelliCode 
achieves this via continual analysis of coding 
patterns, contextual information, code type, 
and more; it then generates recommendations 
on its assessment of GitHub open-source code 
contributions.  For instance, IntelliCode detects 
repetition in a programmer’s draft code, including 
the use of variable (or near-match) names; this 
alone removes a common vulnerability, as attackers 
can exploit duplicate code in some scenarios to 
gain access [62].
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SECTION

05 CONCLUSIONS
As AI-enabled tools of all types continue to find 
increasingly rapid purchase in both private industry 
and government, their application to cybersecurity 
practices in general, and SSC defense in particular, 
are almost certain to follow suit.  Overall, one of 
AI’s most useful capabilities is how well it can filter 
through large volumes of data and detect low 
signal-to-noise advanced-persistent-threat-like 
risks.  Markedly better detection will enable faster 
prediction speeds and, ultimately, rapid-response 
actions.  Future work in the AI-enabled SSC space 
is likely to investigate the ability to accelerate 
behavior-based detections via increased compute, 
optimal AIOps, integrated end-to-end workflow, 
and dynamic updates for feature engineering.  With 
the potential addition of automated distributed 
training, future tools could easily display the ability 
to detect malign cyberactions, based on behavioral 
data, while using AI to support near-real-time 
alerting.

Effectively managing the intricate and diverse 
supply chain within the U.S. government entails a 
heavy reliance on an extensive network of suppliers 
and vendors providing software components.  This 
dependence poses challenges in ensuring the 
security of these components within the SSC.  To 
address these security challenges comprehensively, 
a combination of technical solutions, robust 
security practices, collaborative efforts among 
stakeholders, and adherence to industry standards 
is imperative.

Prioritizing security within the SSC is crucial for 
organizations to mitigate risks and protect against 
potential vulnerabilities and attacks.  Unfortunately, 
federal entities often lack complete visibility into 
their SSCs, including details about the origin, 
integrity, and security of the components.  This 
limited visibility makes it difficult to identify 
and address potential risks and vulnerabilities.  
Moreover, relying on third-party vendors 
introduces additional risks related to the security 
practices and integrity of the provided software 
components.

To enhance SSC security, it is essential to implement 
preventive strategies against potential attacks.  
This involves establishing a security baseline and 
adopting robust behavioral continuous monitoring 
practices.  Behavioral methods leverage AI models 
to forecast, infer, predict, correlate, and identify 
likely weaknesses, potential attack vectors, and 
avenues of approach within SSC-embedded 
software.  AI-powered systems can monitor SSCs 
in real time, detecting suspicious activities and 
unauthorized access.

AI is particularly adept at automating routine 
security audits and assessments of SSCs to identify 
potential vulnerabilities, risks, and security 
control gaps.  This proactive approach enables 
organizations to address potential exploits and 
vulnerabilities promptly, receiving timely alerts 
for swift responses to security incidents and 
minimizing potential damage.  Furthermore, 
integrating AI with security coding workflows 
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streamlines the autocompletion and updating of 
required compliance practices, enhancing overall 
code quality, reducing defects, and improving 
efficiency.
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