
CSIAC-BCO-2023-499

SOAR
STATE-OF-THE-ART REPORT (SOAR)
JANUARY 2024

DISTRIBUTION STATEMENT A
Approved for public release: distribution unlimited.

APPLICATIONS OF
ARTIFICIAL INTELLIGENCE
(AI) FOR PROTECTING
SOFTWARE SUPPLY CHAINS
(SSCS) IN THE DEFENSE
INDUSTRIAL BASE (DIB)
By Abdul Rahman
Contract Number: FA8075-21-D-0001
Published By: CSIAC

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

iii

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

APPLICATIONS OF ARTIFICIAL
INTELLIGENCE (AI) FOR

PROTECTING SOFTWARE SUPPLY
CHAINS (SSCS) IN THE DEFENSE

INDUSTRIAL BASE (DIB)
ABDUL RAHMAN

SOAR
STATE-OF-THE-ART REPORT (SOAR)
JANUARY 2024

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

iv

The Cybersecurity & Information Systems
Information Analysis Center (CSIAC) is a
U.S. Department of Defense (DoD) IAC sponsored
by the Defense Technical Information Center
(DTIC). CSIAC is operated by SURVICE Engineering
Company under contract FA8075-21-D-0001 and is
one of the three next-generation IACs transforming
the DoD IAC program: CSIAC, Defense Systems
Information Analysis Center (DSIAC), and
Homeland Defense & Security Information
Analysis Center (HDIAC).

CSIAC serves as the U.S. national clearinghouse
for worldwide scientific and technical information
in four technical focus areas: cybersecurity;
knowledge management and information sharing;
modeling and simulation; and software data
and analysis. As such, CSIAC collects, analyzes,
synthesizes, and disseminates related technical
information and data for each of these focus areas.
These efforts facilitate a collaboration between
scientists and engineers in the cybersecurity and
information systems community while promoting
improved productivity by fully leveraging this same
community’s respective knowledge base. CSIAC
also uses information obtained to generate
scientific and technical products, including
databases, technology assessments, training
materials, and various technical reports.

State-of-the-art reports (SOARs)—one of CSIAC’s
information products—provide in-depth analysis of
current technologies, evaluate and synthesize the
latest technical information available, and provide a
comprehensive assessment of technologies related
to CSIAC’s technical focus areas. Specific topic areas
are established from collaboration with the greater
cybersecurity and information systems community
and vetted with DTIC to ensure the value-added
contributions to Warfighter needs.

CSIAC’s mailing address:

CSIAC
4695 Millennium Drive
Belcamp, MD 21017-1505
Telephone: (443) 360-4600

ABOUT CSIAC

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

v

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any
other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE
January 2024

2. REPORT TYPE
State-of-the-Art
Report

3. DATES COVERED

4. TITLE AND SUBTITLE
Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains
(SSCs) in the Defense Industrial Base (DIB)

5a. CONTRACT NUMBER
FA8075-21-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Abdul Rahman

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cybersecurity & Information Systems Information Analysis Center (CSIAC)
SURVICE Engineering Company
4695 Millennium Drive
Belcamp, MD 21017-1505

8. PERFORMING ORGANIZATION REPORT
NUMBER
CSIAC-BCO-2023-499

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Technical Information Center (DTIC)
8725 John J. Kingman Road
Fort Belvoir, VA 22060

10. SPONSOR/MONITOR’S ACRONYM(S)
DTIC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The application of artificial intelligence (AI) to software supply chains (SSCs) within the defense industrial base (DIB) holds promise to
improve cybersecurity posture, ensure stricter compliance with National Institute of Standards and Technology (NIST) controls, and
increase user confidence in software built in part upon modules and libraries from outside repositories. AI can provide analysts with
suggested frequencies for (re)scanning, supplement threat assessments of infrastructure, automate threat intelligence processing,
and expedite cybersecurity risk management. Moreover, the security of SSCs in the DIB can benefit from similar uses of AI as a
recommendation engine for communicating the probability of compromise. For U.S. Department of Defense cybersecurity analysts,
AI-driven automation can provide insight into how closely software capabilities deployed on military and government networks adhere to
NIST compliance standards. The ability to reflect the most up-to-date set of vulnerabilities within a system security plan could significantly
improve upon the existing practice of relying on manual internal scanning. AI can enable human-in-the-loop workflows to optimize the
integration of processed threat intelligence and better identify vulnerabilities per software and/or operating system. This report presents
and discusses how AI can protect SSCs purpose-built for the DIB ecosystem.

15. SUBJECT TERMS
cybersecurity, cyberattack, software supply chain (SSC), code repositories, software vulnerabilities, cybersecurity framework, software bill
of materials, artificial intelligence, machine learning, automation, penetration monitoring, defense industrial base, contractor software,
software build security, third-party vendor security

16. SECURITY CLASSIFICATION OF:
U

17. LIMITATION
OF ABSTRACT
UU

18.
NUMBER
OF PAGES
48

19a. NAME OF RESPONSIBLE PERSON
Vincent “Ted” Welsh

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

19b. TELEPHONE NUMBER (include area code)
443-360-4600

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

ON THE COVER:
(Source: Shutterstock & freepik)

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

vi

ABDUL RAHMAN, PH.D.

Dr. Abdul Rahman is a subject matter expert in the
design and implementation of cloud analytics and
architectures that support situational awareness
tools for cybernetwork operations for commercial
and government customers. He has over 25 years
of information technology experience, including
software development, network engineering,
systems design, systems architecture, security,
and network management. He has published
widely on topics in physics, mathematics, and
information technology. Dr. Rahman holds Doctor
of Philosophy degrees in mathematics and physics.

THE AUTHOR

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

vii

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

ABSTRACT

The application of artificial intelligence (AI)
to software supply chains (SSCs) within the
defense industrial base (DIB) holds promise to
improve cybersecurity posture, ensure stricter
compliance with National Institute of Standards
and Technology (NIST) controls, and increase user
confidence in software built in part upon modules
and libraries from outside repositories. AI can
provide analysts with suggested frequencies for
(re)scanning, supplement threat assessments
of infrastructure, automate threat intelligence
processing, and expedite cybersecurity risk
management. Moreover, the security of SSCs in
the DIB can benefit from similar uses of AI as a
recommendation engine for communicating the
probability of compromise. For U.S. Department
of Defense cybersecurity analysts, AI-driven
automation can provide insight into how closely
software capabilities deployed on military and
government networks adhere to NIST compliance
standards. The ability to reflect the most up-to-
date set of vulnerabilities within a system security
plan could significantly improve upon the existing
practice of relying on manual internal scanning.
AI can enable human-in-the-loop workflows to
optimize the integration of processed threat
intelligence and better identify vulnerabilities per
software and/or operating system. This report
presents and discusses how AI can protect SSCs
purpose-built for the DIB ecosystem.

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

viii

The author would like to thank the staff of the
Cybersecurity & Information Systems Information
Analysis Center and SURVICE Engineering
Company for their guidance and review of this
report.

ACKNOWLEDGMENTS

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

ix

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

EXECUTIVE SUMMARY

Managing the intricate and diverse supply chain
within the U.S. government involves a heavy
reliance on an extensive and varied network of
suppliers and vendors for software components.
This dependence introduces a range of challenges
in ensuring the security of these software
components. To address these software supply
chain (SSC) security challenges effectively, a
combination of technical solutions, robust security
practices, collaboration among stakeholders, and
adherence to industry standards is essential.

Prioritizing SSC security is critical for organizations
to mitigate risks and safeguard against potential
vulnerabilities and attacks. Unfortunately,
federal entities often lack complete visibility
into their SSCs, including information about the
origin, integrity, and security of both packet and
precursor components. This lack of visibility makes
it challenging to identify and mitigate risks and
vulnerabilities. Furthermore, reliance on third-
party vendors introduces additional risks related
to the security practices and integrity of provided
software components.

To secure SSCs, it is crucial to implement
preventive strategies against attacks. This can be
achieved by establishing a security baseline and
engaging in robust and continuous behavioral
monitoring practices. The most sophisticated
of these behavior-based methods involves the
utilization of artificial intelligence (AI) models to
forecast, infer, predict, correlate, and pinpoint likely
weaknesses, potential attack vectors, and avenues
of approach within SSC-embedded software.
AI-powered systems can continuously monitor
SSCs in real time, identifying suspicious activities
and flagging actions that would otherwise allow
for unauthorized access.

AI models are particularly well suited for the
automation of routine SSC security audits and
assessments that are intended to detect potential
vulnerabilities, risks, and security control gaps.
Such a proactive, real-time approach enables
organizations to address potential exploits and
vulnerabilities promptly and, if a penetration does
occur, to receive immediate alerts to facilitate
swift responses to security incidents, minimizing
damage. Moreover, the integration of AI with
security coding workflows can streamline the
autocompletion and updating of required
compliance practices, thereby enhancing overall
code quality, defect reduction, and efficiency.

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

xi

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

CONTENTS
 ABOUT CSIAC IV

 THE AUTHOR VI

 ABSTRACT VII

 ACKNOWLEDGMENTS VIII

 EXECUTIVE SUMMARY IX

SECTION 1 INTRODUCTION 1-1

1.1 Defining SSC Attacks 1-1

1.2 SSCs and the Defense Industrial Base 1-3

1.3 Securing SSC 1-4

1.4 Report Overview 1-4

SECTION 2 DATA MANAGEMENT STRATEGIES 2-1

2.1 Open-Source Packages 2-1

2.2 Attack Surface Management and Threat Modeling 2-2

2.3 Application Code Security 2-5

2.4 NIST Cybersecurity Framework 2-5

SECTION 3 FEATURE DEVELOPMENT 3-1

3.1 Secure Software Updates: Development, Security, and Operations (DevSecOps);
Artificial Intelligence for Internet Technolocy Operations (AIOps); and Machine
Learning Operations (MLOps) 3-1

3.2 Push Protection 3-2

3.3 Other SSC Frameworks 3-2

3.3.1 General Frameworks 3-3

3.3.2 SBOM and Pipeline Bill of Materials (PBOM) 3-3

3.3.3 Supply Chain Levels for Software Artifacts (SLSA) 3-4

SECTION 4 APPLICATIONS OF AI 4-1

4.1 AI Models With Blockchain Integration With SSC Frameworks 4-1

4.2 Software Vulnerability Analysis and Detection Using AI 4-3

4.3 AI-Enhanced Coding Reliability 4-4

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

xii

 FIGURES

Figure 1-1 An Enterprise’s Visibility, Understanding, and Control of Its SSC Decrease
With Each Layer of the Broader Development Community’s Involvement 1-2

Figure 1-2 Cybersecurity Risks Throughout the Supply Chain 1-5

Figure 2-1 An SSC With Focus on a Single Link; Systemwide Security Depends on Upstream/
Downstream Transparency, Link Validity, and Logical Separation Between
Components and Links 2-1

Figure 2-2 Data Flow Diagram of an Example Attack Surface 2-3

Figure 2-3 The Six Main Pillars of a Successful Cybersecurity Program, as Reflected in the
NIST CSF Version 2.0 (Draft) 2-6

Figure 3-1 Build Platform Workflow for Provenance, as Attestation of Created Artifacts
in Support of SSC Security 3-4

Figure 3-2 SLSA Approach to SSC Threats and Mitigations 3-5

Figure 4-1 Notional Architecture of Blockchain Integrated With AI (FL) and Framework;
Frameworks Provide Artifact Level Alignment for Distributed AI (FL) to Be Trained
Over All Locations 4-2

 CONCLUSIONS 5-1

 REFERENCES 6-1

CONTENTS, continued

 TABLES

Table 2-1 NIST Guidance for Organizational Supply Chain Risk Management Under the
“Identify” Function of the NIST CSF Version 1.1 2-7

1-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 1

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

01
Once used by the U.S. military in only its most
high-tech systems, software is now omnipresent
across the defense establishment. As the Defense
Innovation Board noted in 2019, software drives
“almost everything” that the U.S. Department of
Defense (DoD) “operates and uses,” from discrete
weapons systems to the overarching networks that
provide command, control, and communications
capabilities for commanders [1]. While protecting
DoD systems from traditional cyberbased attacks
will remain an enduring challenge, threats to
the security of the software supply chains (SSCs)
that develop and produce critical products
have recently risen in prominence as a preferred
threat vector for penetrating and compromising
information systems. By one estimate, the number
of SSC attacks against commercial and public
entities in the United States increased by more
than 700% between 2019 and 2023 [2]. SSC attacks
have become such an acute threat that the real-
time tracking of SSC incidents has become a niche
subsection of the cybersecurity solutions market [3].

1.1 DEFINING SSC ATTACKS

As its name suggests, an SSC refers both to the
process of developing code-based packages
across multiple parties and the outcome of
chained-development activities into usable
software products. SSCs encompass software
modules, libraries, registries, and components,
as well as all the hardware, operating systems,
and cloud services that may be used during the
coding and development process. As one leading

software developer Red Hat has pointed out, an
SSC is most properly considered to include even
the people who write the code [4]. Current
software development practices are relatively open,
especially when compared with traditional coding
methods, which remained in use well into the
early 2000s. Instead of single entities developing
software—entirely in house and by writing all code
from scratch—current practices intentionally draw
upon broad software communities. Developers
leverage code sourced from external (but
interconnected) libraries and modules that may
serve different purposes for an application (e.g.,
encryption, authentication, and networking) [4].

Although this type of community development
delivers key efficiencies to software production,
it also presents bad actors with a wide range of
potential threat vectors. Admitting dependencies
through SSC development can introduce
exploitable software code that is vulnerable to
numerous, and cascading, vulnerabilities into the
postbuilt product code baseline (see Figure 1-1).
An SSC attack might seek to exploit open-source or
shared tools, or to illicitly access a single developer’s
proprietary build infrastructures [5]. Whatever
the vector, an SSC attack consists of at least two
elements: (1) a malign actor compromising at least
one supplier within an SSC and (2) that vulnerability
then being used to harm other supplier(s) or the
final product/customer. While it is possible that an
SSC can be penetrated in part due to the actions of
an insider, leading defense intelligence authorities
like the U.S. National Counterintelligence and

INTRODUCTION

1-2

State-of-the-A
rt Report: SEC

TIO
N

 1

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Security Center see cyberbased (or software
enabled) SSC attacks as the more common and,
thus, greater threat at present [5].

The documented ability to exploit vulnerabilities
in an SSC has existed since at least the 1980s, when
the “Ken Thompson hack” or “trusting trust attack”
demonstrated the ability to compromise source
code while leaving behind almost no trace of
alteration [7]. Since then, the massive expansion
of software production and the ubiquitous use of
connected information systems across all sectors
of the economy have made SSC exploits a prime
vector for malign actors. For example, SSC attacks
often target popular package managers (e.g., node
package manager [npm] for Javascript node.js)
and their user communities. These communities
have experienced incredible growth over the
past decade—the number of public repositories
hosted in the GitHub platform grew from 46,000

in early 2009 to more than 200 million by 2022 [5].
Accordingly, adversarial nation-states, terrorists,
and other transnational criminal organizations
recognize that SSC attacks can cause widespread
and cascading harmful effects, all while requiring
relatively few resources to execute [8].

A number of headline penetrations in recent years
have raised the profile of SSC attacks for malign
actors. In 2017, the “NotPetya” SSC cyberattack—
the most damaging such attack then to date—
infected a line of accounting and tax reporting
software used by the Ukrainian government
before spreading to several large multinational
firms. The malware that Russian-sponsored
hackers inserted disrupted email systems at a
major food manufacturer and disabled multiple
logistics systems for an international shipping
company. In doing so, NotPetya even crippled
one pharmaceutical firm’s ability to supply

Figure 1-1. An Enterprise’s Visibility, Understanding, and Control of Its SSC Decrease With Each Layer of the Broader Development
Community’s Involvement (Source: Boyens et al. [6]).

1-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 1

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

vaccines to the U.S. Centers for Disease Control
and Prevention [9]. By 2020, the “SolarWinds”
cyberattack, which originated from the Russian
Foreign Intelligence Service, similarly penetrated a
wide array of networked systems, primarily within
the U.S. federal government. After being injected
with backdoor code, a routine software update
package for a technology administration suite was
widely downloaded; worse, the compromise went
undetected for nearly 12 months [10].

1.2 SSCS AND THE DEFENSE INDUSTRIAL BASE

The DoD acquires software products and systems,
professional services, and the supporting hardware
and computing power needed for operation
much in the same way it obtains crates of
5.56-mm rifle ammunition—mostly purchasing
them from private firms and other public or
nonprofit suppliers. Generally known as the
Defense Industrial Base (DIB), this collection of
organizations, facilities, and resources provides
the DoD with hundreds of billions of dollars of
products and services each year and represents
the nation’s enduring industrial and economic
might [11]. The broad magnitude and scope of
the DoD’s acquisition activities means that more
than 1 million workers and around 60,000 firms
can be considered part of the DIB [11]. While many
of these firms do not directly shape or influence
the development of software products that enter
militarily-relevant SSCs, every single entity (even
those that only produce hardware, like 5.56-mm
cartridges) uses software platforms that are
vulnerable to penetration.

The DIB’s immense scope and wide reach into
suppliers and subcontractors make the defense
of its SSCs an immense task. Two longstanding
vulnerabilities further complicate this challenge:

1. The production of microelectronics, once
common in the United States, has been mostly
offshored to international producers, limiting
government security oversight. (Enactment

of the $54-billion federal “Creating Helpful
Incentives to Produce Semiconductors (CHIPS)
Act of 2022” is aimed at reversing this trend [12].)

2. “The growing complexity” of the electronics,
platforms, and architectures that DIB-produced
and DoD-operated systems depend upon
makes SSC security an utterly overwhelming
task. Both a “lack of traceability” and the need
for persistent, “continuous monitoring” by the
DoD of vendors and components in the DIB are
key limiters in comprehensively securing SSCs
within the national security and homeland
defense space [13].

Along with the centrality of software to DoD
operations, these two vulnerabilities have made
penetration of SSCs within or adjacent to the DIB,
as well as the intelligence community at large, a
key objective for adversarial action [14]. In the past
5 years, military analysts have witnessed an uptick
in attempts to penetrate defense-related SSCs,
with a particular eye toward gaining direct control
over DoD systems and other critical infrastructure
to disable them in the event of armed conflict. In
September 2019, hackers attacked the SSCs of
four subcontractors working for Airbus, a major
aeronautics firm that supplies the DoD with sensing
systems as well as airframes [15]. In May 2023, a
multi-agency joint advisory warned that a hacking
group sponsored by the People’s Republic of China,
known as Volt Typhoon, had penetrated electrical
systems in the homeland and in the U.S. territory
of Guam—a key strategic site for operations in
the U.S. Indo-Pacific Command [16]. Further
complicating the daunting task of SSC security
is the hodgepodge of systems, software vintages,
and architectures that the DoD employs; each
service branch largely operates its systems and
networks separately from the others. Unifying a
software security posture across the department
has been likened to “assembling a puzzle with
pieces from different sets” [17].

1-4

State-of-the-A
rt Report: SEC

TIO
N

 1

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

1.3 SECURING SSC

Both the DoD and the broader federal national
security enterprise have responded to assess
the vulnerability of their systems to SSC exploits
and secure the broader software development
and production communities that support
government operations. For example, in July
2023, new administrative policies promulgated
in the U.S. “National Cybersecurity Strategy
Implementation Plan” tightened the technical
requirements that suppliers and contractors must
meet in following cybersecurity supply chain
risk management (C-SCRM) best practices [18].
Operating in compliance with these best practices
is a critical step to building trust in international
software suppliers, as compliance makes the digital
ecosystem more “transparent, secure, resilient, and
trustworthy” [10].

Two months later, the DoD followed up the whole-
of-government strategy with its own DoD-specific
cyberstrategy [19]. The document recognizes,
at a high strategic level, the importance of
protecting the DIB from malicious cyberattacks and
recommends a number of procedural changes, like
the alignment of DIB contract incentives with DoD-
specific cybersecurity requirements. Moreover, the
strategy points toward the usefulness of ongoing
research and development activities that might
increase DoD capabilities for “rapid information-
sharing and analysis” in the “identification,
protection, detection, response, and recovery of
critical DIB elements” [19]. The Office of the DoD
Chief Information Officer is also working to finalize
an enterprise-wide strategy for cyber supply chain
risk management to guide protective actions for
SSCs across the DoD [20].

The majority of technical guidance for securing
SSCs across the firms and organizations that
make up the DIB is generated by the National
Institute for Standards and Technology (NIST).
A longstanding federal entity originally involved
in the standardization of weights, measures,

and metrology measurements, NIST released
its landmark cybersecurity framework (CSF) as
Version 1.0 in 2014 [21]. The framework quickly
found widespread adoption among commercial
firms and government information technology (IT)
departments and has been updated and expanded
several times since [22].

At its core, the CSF details a set of best-practice
cybersecurity activities, standardized tools, and
references and further describes the “desired
outcomes” of the application of the framework
across an organization. While NIST is not a
traditional regulatory agency, use of the CSF has
since become mandatory for federal agencies
[23]. Other NIST guidance, including the “Secure
Software Development Framework (SSDF)
Version 1.1: Recommendations for Mitigating
the Risk of Software Vulnerabilities” (NIST
Special Publication [SP] 800-218) [24] and the
“Cybersecurity Supply Chain Risk Management
Practices for Systems and Organizations” (NIST
SP 800-161r1) [6], provides additional discussion
of vulnerabilities and SSC security controls at both
a technical and conceptual level (see Figure 1-2).

1.4 REPORT OVERVIEW

While guidance documents for the organizational
practice of C-SCRM are very useful, they might also
best be characterized as broad and nonspecific
[25]. Moreover, as the volume of data and code
that inhabit a given SSC continues to grow, entities
like firms within the DIB would benefit greatly
from next-generation analytical tools to identify
potential SSC vulnerabilities and then secure them.
Accordingly, this state-of-the-art report discusses
the requirements, progress, and latest trends in
using artificial intelligence (AI) tools and techniques
to secure the defense-critical SSC. Detection
of SSC attacks can be accomplished through
building AI models deployed against collected
distributed datasets designed, developed, trained,
and tested over useful features. The combination
of AI-enabled analytics with broader security

1-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 1

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

approaches like the current version of
NIST CSF 1.1 [26] (Version 2.0 of the CSF [27]
is under development) can generate a truly
comprehensive method of securing SSCs.

This report discusses data management strategies
and feature development as the two core
prerequisites for robust AI model development.
Section 2 summarizes data management
strategies to describe the most salient aspects
needed for robust AI model development aligned
to SSC security. Section 3, in surveying feature
engineering and development, addresses the
required understanding of SSC frameworks
and their attributes upon which AI models will
be trained. Section 4 explores how AI models
can enhance software code reliability, integrate
with blockchain technology, and improve SSC
vulnerability analysis and detection. Overall, this

report discusses the performance of AI models
across all phases of SSC analytical processing,
where it may lead to faster predictions and
enhanced integration with security operations
workflows.

Figure 1-2. Cybersecurity Risks Throughout the Supply Chain (Source: Boyens et al. [6]).

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

2-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 2

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

02
The development of AI-enabled models is
predicated first upon the use of robust and
best-practice-compliant data management
practices. The processes of data collection,
aggregation, storage, and organization are key
enablers of engineering (or developing) features
targeted at the phenomena that will provide
the largest benefits to early detection of SSC
compromises. For instance, the use of packages
from public component registries, if not carefully
monitored, can introduce significant vulnerabilities
to an SSC. Data provided by Sonatype, an SSC
management company, reveal that the count
of malicious packages identified across diverse
open-source ecosystems in 2023 has tripled
compared to the previous year [28]. That increase,
in turn, comes on the heels of a staggering 650%
year-on-year increase in security attacks exploiting
vulnerabilities in open-source software’s supply
chain in 2021 [29].

2.1 OPEN-SOURCE PACKAGES

This rapid rate of expansion is truly remarkable,
emphasizing the supply chain’s emergence as one
of the fastest-growing avenues for malevolent code
execution. The widespread use of open-source
packages in particular threatens to introduce
vulnerabilities (or compromises) into a single SSC or
multiple-linked, interdependent SSCs, with harmful
ramifications that can cascade both upstream and
downstream of a penetration [30] (see Figure 2-1).
Without greater vision into the full reach of an SSC,
benevolent actors are limited in the measures

available to them to mitigate risk or employ
countermeasures in a timely fashion.

Virtually all modern software relies heavily on prior
innovations distributed freely and made accessible
by the world’s most skilled experts. This invaluable
foundation is offered to developers at no cost. As
a result, it is often estimated that as much as 90%
of the code utilized in software production systems
is derived from open-source origins. However, a
substantial number of open-source programming
language repositories are maintained by the open-
source community in a voluntary, part-time, and
often haphazard manner [28]. While efforts have
been made to prevent the hijacking of existing
developer accounts for the dissemination of
malicious components (such as the introduction
of mandatory multifactor authentication), this
does not fully deter attacks involving the upload
of rogue packages from new accounts.

DATA
MANAGEMENT

STRATEGIES

Figure 2-1. An SSC With Focus on a Single Link; Systemwide Security
Depends on Upstream/Downstream Transparency, Link Validity, and
Logical Separation Between Components and Links (Source: Okafor
et al. [30]).

2-2

State-of-the-A
rt Report: SEC

TIO
N

 2

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Few, if any, automated detection techniques
are currently in place (much less actively used in
practice), and the volunteer-based vulnerability
removal procedures used by many community
repositories are slow, cumbersome, and grossly
inefficient when facing code intentionally designed
to be malicious from the outset. Sonatype
emphasizes the fact that packages harboring
malicious code are often treated similarly to
packages with new security vulnerabilities. This
practice can allow malicious packages to persist
longer than necessary, exposing developers to
risks [28].

The potential of generative AI in software
development is undeniably promising, but it
does come with its set of challenges, both real
and perceived. Significantly, a full 61% of the
developers polled by Sonatype in 2023 view
generic AI technology as “overhyped,” while only
37% of IT security leads feel the same. While a
majority of respondents currently utilize AI to
varying degrees, that use is not always driven
by personal preference. An astonishing 75% of
both groups acknowledge feeling pressure from
their organization’s leadership to embrace and
deploy AI technologies, as leadership typically
stresses AI’s productivity-enhancing capabilities
over its associated potential security concerns
[28]. However, it is likely that applying specific
targeted AI models to the task of SSC vulnerability
monitoring will minimize this skepticism, as AI
moves from a nebulous technological concept to
a series of discrete, defined, and useful software
tools.

To proactively address the issue of open-source
compromises, robust AI models can be implemented
to support the prediction of package vulnerabilities
that are susceptible to high-risk supply chain
attacks. In 2022, Zahan et al. [29] focused on
assisting software developers and security experts
in assessing signals of weakness in the npm supply
chain to prevent future attacks by conducting
empirical investigations into npm package

metadata. The authors scrutinized the metadata
of 1.63 million packages, applying 6 indicators of
compromise (IoC) of SSC security vulnerabilities.
These include an expired maintainer domain,
installation scripts, unmaintained packages, too
many maintainers, too many contributors, and
overloaded maintainers [29].

These IoCs can be used both to structure SSC data
and formulate feature engineering approaches
for AI models equipped to detect SSC attacks.
One of the case studies used by the authors [29]
identified more than 10 malicious packages using
the installation script indicator. Furthermore, they
discovered over 2,800 maintainer email addresses
that were associated with expired domains—
a vulnerability that could potentially enable an
attacker to hijack over 8,000 packages by way
of compromising npm accounts. The software
development community provided positive
feedback for the use of these IoCs as “weak link
signals” or indicators. A survey completed by
470 npm package developers found greater than
50% support of responses for the use of 3 of the
6 IoCs: an expired maintainer domain, installation
scripts, and unmaintained packages [29].

2.2 ATTACK SURFACE MANAGEMENT AND
THREAT MODELING

Software package vulnerabilities are a significant
contributor to the overall risk associated with
software security. Eliminating all vulnerabilities
is both impossible and impractical, as they
can potentially lead to security risks in the
SSC. Nevertheless, effective strategies exist for
reducing and managing these risks. Two of the
most effective strategies for managing supply
chain security risks are known as “attack surface
management” and “threat modeling.”

The task of controlling attack surfaces involves
assessing and managing the system entry points
that attackers could exploit to compromise a
system. Doing so helps to identify vulnerabilities

2-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 2

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

in either the system’s design or implementation
that might be particularly susceptible to malign
action [31]. Threat modeling, on the other hand,
is the process of analyzing and understanding the
characteristics and scope of potential threats to a
system—a key input to which is an assessment of
its prime attack surfaces (see Figure 2-2) [31]. Both
approaches are valuable to perform throughout
the entire software lifecycle, from development
and deployment to ongoing maintenance.

From an attack surface perspective, open-source
code compromises transpire when malicious actors
infiltrate publicly accessible code repositories
and insert harmful code for public consumption.
Unsuspecting developers—in their understandable
search for freely available code snippets to fulfill
specific functions—unwittingly incorporate these
tainted elements into their third-party code.

One salient example dates back to 2018 and
involved the detection of malevolent Python
libraries on the official Python Package Index.
Employing what is known as “typosquatting”
tactics, the attacker fashioned libraries with names
like “diango,” “djago,” and “dajngo,” mimicking
the common and much sought-after Python
library correctly spelled as “django.” To aid in the
persistence of their propagation across linked
SSCs, these deceptive libraries replicated the
genuine code and functionality of their genuine
counterpart but harbored additional features,
such as the capability to establish boot persistence
and create a reverse shell on remote workstations.
Notably, open-source code compromises can also
affect privately owned or enterprise software,
since developers of proprietary code frequently
incorporate open-source elements into their
products [32]—sometimes even if their
organization’s security policy prohibits it.

Figure 2-2. Data Flow Diagram of an Example Attack Surface (Source: Ellison et al. [31]).

2-4

State-of-the-A
rt Report: SEC

TIO
N

 2

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Because an SSC’s attack surface can admit a diverse
and wide range of vulnerabilities, the ramifications
of an SSC compromise can be dire. Initially, threat
actors seek to exploit the “gaps” in a compromised
software vendor to secure privileged and persistent
access to a victim’s network. By attacking an
outside or third-party software vendor as part of
their effort to target another organization, bad
actors circumvent outer security measures like
border routers and firewalls, thereby gaining an
initial foothold. In the case of network access loss,
threat actors can often simply re-enter the system
through the compromised vendor.

While the process of gaining initial access is
generally indiscriminate, threat actors often
exercise discretion in selecting targets for
subsequent actions. These follow-on actions
exhibit considerable variability; however, they
frequently commence with the insertion of
tailored malware packages into a chosen target.
Depending on the threat actor’s intent and
capabilities, this added malware may enable the
attacker to conduct a variety of malicious activities,
to include data or financial theft; surveillance of
organizations or individuals; network or system
disruption; or, in extreme cases, even physical harm
or loss of life.

Those who work to defend friendly networks are
limited when attempting to promptly mitigate
the repercussions of an SSC compromise. This
stems from the fact that organizations seldom
have full control over their entire SSC, lacking
the authority to compel each participant in the
supply chain to swiftly undertake mitigation
measures. Recognizing the challenge of
mitigating postattack consequences, it is
imperative for network defenders to proactively
adopt and adhere to industry best practices.
Implementation of these practices can only
improve or enhance an organization’s capacity
to prevent, mitigate, and respond to such attacks.

Examining the attack surface and following
known risk assessment methodologies (like threat
modeling) are essential practices for mitigating
SSC security risks. Nevertheless, it is crucial to
acknowledge that these analyses are not static
entities. Attackers have the capability—and are
highly motivated—to introduce novel techniques
that may infect software or code snippets that had
previously been considered secure. Consequently,
the assessment of the attack surface and its
corresponding threat models should undergo
periodic reviews via human-in-the-loop workflows
and/or automated processes. The frequency of
these reviews should be particularly heightened
when dealing with emerging technologies
(including the use of AI by third-party code-
development processes elsewhere) and could
align with the training, testing, and deployment
of AI development lifecycles.

By their nature, new technologies may possess
undocumented vulnerabilities (e.g., zero-days)
because they lack an extensive history of known
exploits, which would otherwise be used to
inform threat modeling and other security risk
assessment techniques. More frequent reviews
are thus necessary to adapt to this evolving threat
landscape. One such response might increase
the frequency of internal system/enterprise
scanning to detect abnormal behavior. In this use
case, AI models can be developed and trained to
specifically alert to such anomalies.

Both the frequent recalibration of the scope of
security assessments and the behavior-based
AI models can significantly aid the collection of
essential information for organizational leaders
to prioritize the means for their SSC security. Note
that the security risks addressed by threat modeling
and attack surface analyses differ significantly from
those addressed by more traditional infrastructure
security mechanisms, such as firewalls,
authentication methods, and access control
mechanisms. These infrastructure mechanisms
primarily focus on preventing unauthorized access

2-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 2

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

to system resources. However, as systems continue
to grow increasingly interconnected, and as
security vulnerabilities in network and operating
systems are reduced, application software is likely
to emerge as the next most promising attack target
for malign actors [31].

2.3 APPLICATION CODE SECURITY

The importance of application code security is
often overlooked relative to SSC security, due to
the assumption that standard network perimeter
defenses (like network firewalls) can effectively
block malicious access [31, 33–35]. However,
application code itself can become a significant
source of security risk, especially in complex
software-use environments that have a wide
and diverse user base, typically located across
different organizations and partners. This potential
weakness is exacerbated by the fact that many
application-build personnel have not received
adequate training in the practices of secure
software development, making them unaware of
the security risks of the design-and-coding choice
made.

The oversight of application code security, however,
is starting to be addressed. Numerous large-scale
initiatives within organizations as diverse as banks,
embedded systems manufacturers, software
vendors, and military service branches like the
U.S. Air Force are underway to enhance their
overall software security via better application
code management. These efforts follow a number
of different cybersecurity frameworks, including
SAFECode, the Building Security in Maturity Model
(better known as BSIMM), the Software Assurance
Processes and Practices Working Group, and
the Software Assurance Maturity Model (known
as SAMM) by the Open Worldwide Application
Security Project (or OWASP) [34, 36]. Additionally,
resources like the “build-security-in” website offer
a host of valuable reference materials on software
security practices for IT managers.

One noteworthy development is the increased
use of fuzz testing, a technique that purposely
uses malformed data to observe how applications
respond to it. Unexpected application failures
resulting from the ingest of malformed data
can help to flag potential reliability and security
issues. To date, fuzz testing has proven effective
not only for security professionals but also for
malign attackers themselves (for instance, in 2009,
a fuzz testing tool was used by hackers to detect
an exploitable defect in widely used extensible
markup language [better known as XML] libraries).

2.4 NIST CYBERSECURITY FRAMEWORK

The inception of the NIST CSF can be traced back
to Executive Order 13636, which was issued on
12 February 2013 [37]. Titled “Improving Critical
Infrastructure Cybersecurity,” the order marked
the commencement of a number of endeavors
on the federal level to facilitate the exchange of
cybersecurity threat information and establish
a comprehensive framework for mitigating
cybersecurity risks. After CSF Version 1.0’s release
in 2014 [21], it was updated to Version 1.1 in 2018
[26]. At the time of writing, NIST had released a
draft version of CSF 2.0 [27], which it intends to
implement in the near future after first gathering
and addressing feedback from key stakeholders
and users [38]. Version 2.0 aims to be a “major
update,” as NIST describes it, expanding its
coverage beyond critical infrastructure alone
and broadening its scope to incorporate new
technological developments and emerging
issues like SSC security and ransomware [38].

The NIST CSF provides high-level guidance,
developed through active engagement with,
and valuable input from, stakeholders across
government, industry, and academia. The
CSF defines common terminology to promote
homogeneity across organizations and harmonizes
a number of pre-existing cybersecurity standards,
guidelines, frameworks, and best practices into a
systematic methodology to manage cybersecurity

2-6

State-of-the-A
rt Report: SEC

TIO
N

 2

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

risk [38]. CSF Version 1.1 classifies these
management activities into one of five “framework
functions:” (1) Identify, (2) Protect, (3) Detect,
(4) Respond, and (5) Recover [26]. CSF Version 2.0
will add a sixth function: “Govern” (see Figure 2-3)
[27]. Subordinate to the functions are numerous
categories of actions (e.g., Protect > Awareness
and Training) followed by subcategories, along
with a number of informative references for each.
In CSF Version 1.1, the “ID.SC” category represents
activities for supply chain risk management under
the identify function; at the subcategory level, this
translates into five groups of SSC security activities
(see Table 2-1). When collectively followed, these
represent the essential (but notably, minimum)
actions required to achieve effective C-SCRM [26].

Different aspects of a software product’s
distribution drive the requirements for SSC
security readiness, but many are based on data
management and/or cybersecurity best practices.
Regarding data, the Data Management Body of
Knowledge (known as DMBoK) can be used to

transform an existing organization’s perspective
on how internal data assets are managed. (Internal
assets can include but are not limited to the
formalization of an accessible and usable data lake
[loosely defined as a logical collection of data that
is accessible but not overly structured] in addition
to addressing the core requirements needed for
SSC security.) To achieve this, current practices
involve technology components like a data lake
and are accompanied by data science “hooks”
to enable model curation, development,
and/or model development [39].

Despite the comprehensive protective nature of
the CSF guidelines, it is evident that they alone are
insufficient for some mission-critical SSCs, including
many of those within the DIB. Rapid changes in the
landscape of software security further underscore
the need to go beyond perimeter defenses, threat
modeling, and other traditional measures. SSC
security demands the careful collection and
continuous management of data sources so that
AI models can build robust feature engineering
methods into powerful AI models to detect SSC
anomalies (i.e., those with strong performance
metrics like accuracy, precision, and F1). AI-enabled
tools will aid DIB entities to anticipate, infer, predict,
correlate, and pinpoint potential vulnerabilities,
potential intrusion routes, and attack vectors within
software embedded in SSCs [39].

Figure 2-3. The Six Main Pillars of a Successful Cybersecurity
Program, as Reflected in the NIST CSF Version 2.0 (Draft)
(Source: NIST [38]).

2-7

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 2

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Table 2-1. NIST Guidance for Organizational Supply Chain Risk Management Under the “Identify” Function of the NIST CSF Version 1.1

Category Subcategory Informative References

Supply Chain Risk
Management (ID.SC):

The organization’s priorities,
constraints, risk tolerances,

and assumptions are
established and used to
support risk decisions

associated with managing
supply chain risk.

The organization has
established and

implemented the processes
to identify, assess, and

manage supply chain risks.

ID.SC-1: Cyber supply chain
risk management processes are
identified, established, assessed,

managed, and agreed to by
organizational stakeholders.

CIS CSC 4
COBIT 5 APO10.01, APO10.04, APO12.04, APO12.05,
APO13.02, BAI01.03, BAI02.03, BAI04.02
ISA 62443-2-1:2009 4.3.4.2
ISO/IEC 27001:2013 A.15.1.1, A.15.1.2, A.15.1.3,
A.15.2.1, A.15.2.2
NIST SP 800-53 Rev. 4 SA-9, SA-12, PM-9

ID.SC-2: Suppliers and third-party
partners of information systems,

components, and services are
identified, prioritized, and assessed

using a cyber supply chain risk
assessment process.

COBIT 5 APO10.01, APO10.02, APO10.04, APO10.05,
APO12.01, APO12.02, APO12.03, APO12.04,
APO12.05, APO12.06, APO13.02, BAI02.03
ISA 62443-2-1:2009 4.2.3.1, 4.2.3.2, 4.2.3.3, 4.2.3.4,
4.2.3.6, 4.2.3.8, 4.2.3.9, 4.2.3.10, 4.2.3.12, 4.2.3.13,
4.2.3.14
ISO/IEC 27001:2013 A.15.2.1, A.15.2.2
NIST SP 800-53 Rev. 4 RA-2, RA-3, SA-12, SA-14,
SA15, PM-9

ID.SC-3: Contracts with suppliers
and third-party partners are used to

implement appropriate measures
designed to meet the objectives

of an organization’s cybersecurity
program and cyber supply chain risk

management plan.

COBIT 5 APO10.01, APO10.02, APO10.03, APO10.04,
APO10.05
ISA 62443-2-1:2009 4.3.2.6.4, 4.3.2.6.7
ISO/IEC 27001:2013 A.15.1.1, A.15.1.2, A.15.1.3
NIST SP 800-53 Rev. 4 SA-9, SA-11, SA-12, PM-9

ID.SC-4: Suppliers and third-party
partners are routinely assessed

using audits, test results, or other
forms of evaluations to confirm

they are meeting their contractual
obligations.

COBIT 5 APO10.01, APO10.03, APO10.04, APO10.05,
MEA01.01, MEA01.02, MEA01.03, MEA01.04,
MEA01.05
ISA 62443-2-1:2009 4.3.2.6.7
ISA 62443-3-3:2013 SR 6.1
ISO/IEC 27001:2013 A.15.2.1, A.15.2.2
NIST SP 800-53 Rev. 4 AU-2, AU-6, AU-12, AU-16,
PS-7, SA-9, SA-12

ID.SC-5: Response and recovery
planning and testing are conducted

with suppliers and third-party
providers.

CIS CSC 19, 20
COBIT 5 DSS04.04
ISA 62443-2-1:2009 4.3.2.5.7, 4.3.4.5.11
ISA 62443-3-3:2013 SR 2.8, SR 3.3, SR.6.1,
SR 7.3, SR 7.4
ISO/IEC 27001:2013 A.17.1.3
NIST SP 800-53 Rev. 4 CP-2, CP-4, IR-3, IR-4,
IR-6, IR8, IR9

Note: CIS = Center for Internet Security, CSC = Critical Security Control, COBIT = Control Objectives for Information and Related Technology, ISA = International
Society of Automation, ISO = International Organization for Standardization, IEC = International Electrotechnical Commission. CIS CSC 4 [40], COBIT 5 [41],
ISA 62443-2-1:2009 [42], ISO/IEC 27001:2013 [43], NIST SP 800-53 Revision 4 [44], ISA 62443-3-3:2013 [45], CIS CSC 19 [46], CIS CSC 20 [47]. As CSF Version 1.1
was released in 2018, some of the mentioned references may have been updated/revised. NIST maintains a live website that is consistently updated and can
be used as a guide when searching for specific information [48].

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

3-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 3

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

03
In addition to Executive Order 14028 (12 May
2021) [49], which bolstered federal cybersecurity
information-sharing requirements and imposed
baseline security standards on government
contractors, several other government initiatives
and industry forums have recently addressed
security assurance measures for bolstering the
security of SSCs and all deployed software. One
other NIST initiative, reflected in an August 2023
initial public draft titled “Strategies for the
Integration of Software Supply Chain Security in
DevSecOps CI/CD Pipelines” (NIST SP 800-204D,
initial public draft), addresses multiple
microservices, which are regarded as the
“predominant” application architecture for
cloud-native applications [39].

3.1 SECURE SOFTWARE UPDATES:
DEVELOPMENT, SECURITY, AND OPERATIONS
(DEVSECOPS); ARTIFICIAL INTELLIGENCE FOR
INTERNET TECHNOLOCY OPERATIONS (AIOPS);
AND MACHINE LEARNING OPERATIONS
(MLOPS)

Cloud-native applications consist of multiple
loosely connected components referred to as
microservices. These software components
follow an agile software development life cycle
(SDLC) methodology known as DevSecOps, which
employs continuous integration/continuous
delivery (CI/CD) pipelines to streamline the
development process. The security and integrity
of these individual operations can significantly
impact the overall security of an SSC, with threats

potentially emerging from malicious actors’
attack vectors or lapses in due diligence at nearly
any point in the SDLC. Seamlessly integrating
the diverse elements of SSC security assurance
into CI/CD pipelines, as well as equipping
organizations to effectively address SSC security
during development and deployment, is central
to defending cloud-native applications from
penetration or SSC compromise [39].

NIST SP 800-204D makes it exceptionally clear that
an essential component of any SSC is the software
update process, one that is typically managed by
specialized software development tools known
as “software update systems” [39]. Maintaining
the security and continuous monitoring of
these update systems is absolutely paramount
in ensuring the overall security of the SSC. The
core function of a software update system is to
identify the necessary files for a given update
request and securely download those trusted files.
Threats targeting software update systems focus
predominantly on attempting to compromise the
evidence generation process to cover their tracks,
making it even more challenging to ascertain the
legitimacy of updates.

Initially, it might seem that establishing trust in
downloaded files only requires the execution
of integrity and authenticity checks, conducted
via the verification of file signatures and other
associated metadata. However, the process of
generating signatures itself is susceptible to known
attacks (at minimum); this standing vulnerability

FEATURE
DEVELOPMENT

3-2

State-of-the-A
rt Report: SEC

TIO
N

 3

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

necessitates the imposition of additional security
measures related to both signature generation and
verification.

MLOps encompasses a set of methodologies that
integrate the development and operational aspects
of machine learning (ML) systems. The primary
objective of MLOps is to optimize the entire
lifecycle of ML, spanning from initial development
and deployment to continuous monitoring and
maintenance. In contrast to conventional software
development (wherein development operations
[known as DevOps] emphasize collaboration
between developers and IT operations for
automating and enhancing software delivery
efficiency), MLOps extends these principles to
the domain of ML and the powerful analytical
tools that the ML space promises.

This extension acknowledges and addresses the
distinctive challenges and prerequisites inherent
to ML systems. The evolving security framework for
integration of SSC security using DevSecOps CI/CD
pipelines for software update systems laid out in
NIST SP 800-204D has incorporated many of these
essential security measures into its specifications
and has recommended others for future
implementations. This framework encompasses
a collection of libraries, file formats, and utilities
designed to enhance the security of both existing
and new software update systems [39].

3.2 PUSH PROTECTION

A crucial security practice within an SSC during
code commits involves preventing the inclusion of
sensitive information within committed code. This
safeguard is achieved through a scanning process
designed to identify secrets, resulting in a feature
known as “push protection.” SSC security measures
also extend to controls implemented during the
continuous delivery process. For instance, one
common control used during deployment is to
verify whether the container image has been
scanned for vulnerabilities and, if so, whether any
vulnerabilities have been confirmed.

Following such an approach empowers
DevSecOps teams to proactively maintain a
secure container environment. It helps to ensure
that only validated containers gain entry and
assists overall in maintaining user trust during run
time. This should also extend to the operational
framework in support of AI model deployments
typically relegated to AI practices. Implementing
DevSecOps for AI (also called AIOps) enables
streamlining and efficiency during the (re)training,
(re)testing, and (re)deployment of AI models and
is especially critical for those making behavior-
based predictions of SSC threats. Furthermore,
AIOps encourages a containerization approach,
assuring that image deployment decisions
align with organization-defined policies. Such
alignment at run time must be achieved to prevent
defects, vulnerabilities, and bad code from being
introduced into models and/or software. These
policies serve as the criteria for allowing or blocking
the deployment of images, contributing to a robust
security posture.

3.3 OTHER SSC FRAMEWORKS

Executive Order 14028 [49] (discussed previously)
was prompted in part after a number of notable
security breaches (including the SolarWinds hack
discussed in Section 1.1) were met by a rising
overall threat level posed by malicious cyberactors
targeting software developers and contributors.
The order entrusts various groups with the task of
formulating new software security standards, tools,
and best practices, and critically, it introduces a new
category of “critical software,” the precise definition
of which has yet to be determined.

The order also removes certain barriers that
hindered the sharing of cybersecurity threat
information among government agencies.
Beyond enhancing the cybersecurity of federal
government systems, it urges private businesses
and academia to elevate SSC security by adhering
to the guidelines set forth by NIST. Furthermore,
it has established a review board to evaluate and
assess cybersecurity incidents and a playbook was

3-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 3

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

devised to govern the federal government’s
response to such incidents.

3.3.1 General Frameworks

Of particular significance to the software
development field is the requirement for
federal agencies to implement “zero trust”
architectures, expedite the transition to secure
cloud environments, and adopt additional
data protection capabilities, along with related
endpoint detection, response, and logging
measures to mitigate ongoing supply chain risks.
For businesses, the most notable aspect is the
commitment to introducing new best practices
and standards for SSCs. At the time of the order’s
issuance, it became evident that new compliance
standards were on the horizon, though the exact
form they would take was still unclear [49]. What
has transpired is the evolution of a relatively recent
concept known as a software bill of materials
(SBOM), or an obligation to partake in vulnerability
disclosure programs, and a requirement to
demonstrate adherence to the best security
practices.

The in-toto framework (intoto.io [50]) is a system
designed to secure the entire SSC, encompassing
the development, building, testing, and packaging
processes. It provides attestation of integrity
and verifiability for each action performed
throughout the supply chain, including code
writing, compilation, testing, and deployment. The
framework ensures transparency by disclosing the
order of steps and the actors involved. According
to in-toto, the framework enables users to verify the
intended execution of each step, authenticate the
actors involved, and ensure that materials (such as
source code) remain untampered between steps.

The Update Framework (TUF) empowers
developers to safeguard update systems against
repository compromises and attacks that focus
on signing keys. TUF offers a robust approach to
provide trust information about software, including

meta-information about artifacts. Its primary
objective is to authenticate the source of data
stored in repositories. Additionally, TUF verifies
the freshness of artifacts and maintains repository
consistency, which are crucial steps for ensuring
overall integrity and security in SSCs. TUF aims
to prevent malicious behavior where attackers
manipulate software artifacts in a way that the
combined result becomes malicious [14].

The Open Software Supply Chain Attack Reference
(OSC&R) provides objective insights into the
target of an attack and its current phase. This
perspective offers a holistic narrative that simplifies
communication about security throughout an
organization; delivers comprehensive visibility
into coverage; and allows teams to assess potential
impacts on the organization, evaluate the
effectiveness of existing protective measures
and controls, and prioritize responses.

3.3.2 SBOM and Pipeline Bill of Materials
(PBOM)

While the concept of a bill of materials (BOM)
outlining the components and their sources within
a product is not novel, the novelty lies in devising a
standard to apply to software and SSCs nationwide.
Numerous manufacturing companies are already
obligated to furnish a BOM detailing every
component of a product, along with the original
manufacturers in cases where they originate from
third-party sources.

An application of BOMs familiar to the average
consumer is for automobile vehicle recalls. In the
event of a defective component, manufacturers
can promptly identify the specific part and its
source and determine how to rectify or replace it.
This principle also applies to SBOMs, which offer
a comprehensive inventory of all elements within
the software, encompassing open-source libraries,
third-party components, and proprietary code.
This transparency assists organizations in
managing their supply chains, proactively

3-4

State-of-the-A
rt Report: SEC

TIO
N

 3

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

identifying vulnerabilities, and responding
more swiftly to security incidents. The use of
SBOMs promises to ensure high-quality code,
regulatory and security compliance, and
protection against threats and vulnerabilities
through the maintenance of an always-up-to-
date and comprehensive BOM.

An SBOM functions similarly to a list of ingredients
on food packaging, declaring the inventory of
components used in constructing a software
artifact, such as a software application. Just as
individuals consult food labels to avoid allergenic
ingredients, SBOMs aid organizations or individuals
in steering clear of software that may pose risks [51].
In contrast to an SBOM, a PBOM goes beyond this
inventory by informing users about whether other
products produced in the same pipeline, using
similar machinery, or within the same production
facility contain potential vulnerabilities or risks [51].
PBOMs offer a comprehensive view, examining
the entire pipeline from the design phase to
production. This thorough assessment enhances
the ability to avoid using harmful software by

considering all the stages where a security breach
could occur. PBOMs excel at helping users steer
clear of potentially unsafe software because they
scrutinize all stages where vulnerabilities or attacks
might occur, as depicted in Figure 3-1.

These approaches provide guidelines, insights,
communication, and declarations for trackable
and referenceable artifacts as inputs in support of
security of SSCs from one or many of these sources
to determine possible anomalies in source, build,
availability, and/or distribution of software.

3.3.3 Supply Chain Levels for Software Artifacts
(SLSA)

SLSA is a framework designed to categorize various
software artifacts within a supply chain, based on
their integrity level [52]. In the context of SLSA,
“integrity” signifies the confidence that a software
artifact has not been tampered with or altered
in an unauthorized manner, ensuring it remains
in its original and intended state. On the other
hand, the OSC&R framework offers a systematic

Figure 3-1. Build Platform Workflow for Provenance, as Attestation of Created Artifacts in Support of SSC Security (Source: The Linux
Foundation [52]).

3-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 3

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

and actionable approach to comprehending
attacker behaviors and techniques employed
in compromising the SSC [50].

Supply chain threats take on different
characteristics that are incorporated into
mitigations with SLSA Version 1.0 [52]. The
four threats are: (1) sources, (2) dependencies,
(3) builds, and (4) availability/verification.

Source integrity threats involve the potential
for an adversary to tamper with the source code
of a software product, making unauthorized
changes [52]. They can also encompass insider
threats, where authorized individuals introduce
unauthorized changes. Dependency threats
involve adversaries introducing malicious behavior
into a software artifact by targeting its external
dependencies. SLSA helps mitigate these threats

when one verifies the provenance (origin and
authenticity) of dependencies using the SLSA
framework. Build threats pertain to adversaries
potentially introducing malicious behavior into a
software artifact without changing its source code.
They also include situations where artifacts are built
from unintended sources or dependencies. The
SLSA build track can help mitigate these threats by
allowing consumers to verify that received artifacts
were built as expected (see Figure 3-2). Finally,
availability threats involve adversaries attempting
to deny access to source code or the ability to build
a package, effectively disrupting the availability of
software resources [52].

The SLSA framework outlines specifications
for distributing provenance information and
further defines the connection between build
artifacts and their associated provenance (known

Figure 3-2. SLSA Approach to SSC Threats and Mitigations (Source: The Linux Foundation [52]).

3-6

State-of-the-A
rt Report: SEC

TIO
N

 3

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

as build attestations) [38]. Its primary focus is
on ecosystems that distribute build artifacts,
although it also extends its attention to ecosystems
distributing container images or solely providing
source artifacts. Many of the core principles within
SLSA are applicable to various types of artifacts.
To ensure that provenance information remains
accessible for verification after artifact generation,
SLSA mandates the distribution and verification
of provenance metadata in the form of SLSA
attestations.

Within this framework, it is the responsibility of
the package ecosystem to make its expectations
available to consumers, reliably redistribute both
artifacts and their associated provenance, and
furnish the necessary tools for secure artifact
consumption. The “package ecosystem” denotes
a set of rules and conventions governing the
distribution of packages. It is important to
note that every package artifact belongs to an
ecosystem, whether formal or informal. Many
ecosystems are informal, while some ecosystems
are formally recognized, such as those governing
language (e.g., Python/Python Packaging
Authority), operating systems (e.g., Debian/
Advanced Package Tool), or general artifact
distribution (e.g., Open Container Initiative
[known as OCI]).

Conversely, informal ecosystems can exist within
organizations or even within ad hoc distribution
methods like sharing software through a website
link, all of which are considered “ecosystems” within
the context of SLSA. During the package upload
process, a package ecosystem has the option to
verify that the artifact’s provenance aligns with
the expected values for that package’s provenance
before accepting it into the package registry. This
practice is strongly recommended whenever
feasible, as it benefits all consumers within the
package ecosystem.

Furthermore, SLSA offers valuable insights for
artifact distributors on how to incorporate the

distribution of SLSA provenance effectively. Its
primary concern revolves around the methods
of distributing attestations and establishing the
relationship between attestations and build
artifacts, rather than prescribing a specific format
for attestations themselves. One noteworthy
aspect of SLSA is that it encourages attestations
to be bound to individual artifacts rather than
releases. This approach acknowledges that a
single “release” of a project, package, or library
may encompass multiple artifacts, which in turn
come from builds on multiple different platforms,
architectures, or environments. These builds may
not necessarily occur simultaneously and can even
span multiple days.

In many ecosystems, determining when a release
is considered “complete” can be an exceptionally
challenging task. It is often permissible to add
new artifacts to older releases during the normal
process of adding support for new platforms
or architectures. As a result, the collection of
attestations for a given release is likely to expand
substantially over time, as additional builds and
attestations are created and accrued. Therefore,
package ecosystems are advised to support
multiple individual attestations per release,
allowing the relevant provenance for each build
to be associated with the release as needed,
depending on its relationship to the associated
artifacts.

4-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 4

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

04
To enhance SSC security, it is imperative to turn to
AI-enabled models and security constructs that
significantly improve upon the semi-automated
(and sometimes manual) processes that are
currently used to forecast, infer, predict, correlate,
and identify likely weaknesses, potential attack
vectors, and avenues of approach within SSC-
embedded software. Promising areas within
this task include the integration of blockchain
technology with SSC cybersecurity frameworks,
the use of AI-enabled models to better automate
software vulnerability analysis, and the use of AI
to enhance the guarantee and confirmation of
code reliability.

4.1 AI MODELS WITH BLOCKCHAIN
INTEGRATION WITH SSC FRAMEWORKS

One line of development meriting special
discussion is the use of blockchain technology and
methods for enhanced SSC security. Blockchain
technology offers an encrypted, peer-to-peer
digital ledger accessible to network participants,
whether public or private. It establishes a
decentralized trust system without the need for
trusted third parties. Within a blockchain network,
numerous partners or nodes coexist, with each
node possessing a copy of the maintained data.
The data within the blockchain are structured into
blocks, where each block comprises a collection
of records, commonly referred to as transactions.
These transactions are organized into a Merkle tree,
wherein the transaction records serve as the leaves
and each child node hash acts as an intermediary
node.

Smart contracts function as trusted intermediaries
positioned between blockchain clients and
blockchain storage, enabling advanced
functionalities. They facilitate client requests,
where the logic for processing services, ranging
from simple to complex, can encompass tasks
like validating application state, enforcing
governance rules, or conducting credential checks.
Smart contracts streamline interactions with the
underlying blockchain by executing queries to
store or retrieve data through a programmable
interface [53–55].

Motivated from research [50, 52–55], an integrated
SSC-blockchain platform (e.g., Let’sTrace) can
be specifically designed to manage software
patch releases and ensure the integrity of these
patches through the utilization of blockchain-
based smart contracts. The verification of patch
integrity for software products is conducted using
an SSC framework (e.g., TUF), and this verification
functionality is seamlessly integrated into the smart
contracts within the platform. Before a patch is
deployed, it can undergo verification through the
platform utilities. Additionally, all software updates
must adhere to the SSC protocols (e.g., in-toto) and
include relevant metadata files.

When a vendor releases a patch, it undergoes
rigorous testing and a comprehensive summary
is then uploaded to the platform. This summary
includes details such as the patch updates, affected
software modules, and alterations in network
traffic patterns (both incoming and outgoing)
following the patch update. Participating utilities

APPLICATIONS
OF AI

4-2

State-of-the-A
rt Report: SEC

TIO
N

 4

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

in the platform have the capability to view and
verify these patch updates and patch supply chain
information using in-toto. The platform can also
construct AI and ML models utilizing supply chain
data from various peers, employing a federated
learning (FL) system. These models can

subsequently be integrated into blockchain smart
contracts to enhance the verification of supply
chain data (see Figure 4-1).

In the event that any suspicious incidents related
to a software or patch update are detected

Figure 4-1. Notional Architecture of Blockchain Integrated With AI (FL) and Framework; Frameworks Provide Artifact Level Alignment
for Distributed AI (FL) to Be Trained Over All Locations (Source: Bandara et al. [55]).

4-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 4

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

during the verification process, immediate
reporting and notification to utilities and vendors
within the platform are facilitated. This enables
prompt actions to be taken to mitigate potential
vulnerabilities. The ability to offer additional
fidelity using annotations from PBOMs and SBOMs
can also be used for training/testing these models
for detection of more nuanced SSC compromises.

The immutability of blockchain provides the ability
to perform change detection on a “true” state of
the system that could not be altered by hackers.
This offers the opportunity to employ a variety
of continuous monitoring tools coupled with
AI models to detect changes, while also storing
alterations to references, pointers, and values
relevant for SSC artifacts. These artifacts could
be driven from PBOM artifact and SBOM artifact
annotations aligned with NIST SP 800-204D [39, 51].

In light of the escalating demand for application
software and the industry’s race for swift code
development, an enduring challenge remains in
maintaining both speed and the production of
bug-free software, particularly in the context of
the now-common postpandemic, work-from-
home setup where constant supervision of
software developers is not always assured. This
scenario increases the likelihood of introducing
software bugs, and traditional testing methods are
likely to struggle in delivering optimal performance.

To address this challenge, innovative decentralized
software testing systems that leverage AI and/or
blockchain technologies automatically detect
and prevent the injection of vulnerable code by
combining the capabilities of deep learning with
the power of smart-contract-driven blockchain.
This approach eliminates the reliance on manually
written rules for vulnerability detection. The range
of nonvulnerability scoring is broad enough that
a discrete score effectively communicates the
classification of the source code. Additionally,
integration of an InterPlanetary File System can
ensure efficient storage within the blockchain [56].

4.2 SOFTWARE VULNERABILITY ANALYSIS
AND DETECTION USING AI

SSC vulnerabilities deriving from software typically
arise from design flaws or implementation
errors, posing threats to the security of a system.
At present, the most prevalent approach for
identifying such vulnerabilities is known as static
analysis. Many existing technologies in this domain
rely on rules or code similarity at the source code
level, using a manually defined matching process to
identify vulnerability features. However, accurately
defining and designing these rules and features
is a significant challenge, with high labor inputs,
lack of speed, and other considerations limiting
the practical application of static analysis beyond
single use cases.

To address this issue, some researchers have
advocated for the use of neural networks, sporting
automatic feature extraction capabilities, to
enhance the intelligence of detection. Yet, a wide
variety in different types of neural networks—
and the substantial impact of different data
preprocessing methods on model performance—
presents formidable challenges for engineers and
researchers who would aim to select appropriate,
much less optimal combinations to resolve a given
problem.

Recently, researchers have conducted extensive
experiments in this space. Those that have
produced the most promising results focused
on the two most common neural networks
(bidirectional long short-term memory [Bi-LSTM]
and random vector functional link [RVFL]) and the
two most classical data-preprocessing methods
(vector representation and program symbolization)
in the context of software vulnerability detection.
Their findings offer valuable insights:

• RVFL consistently exhibits faster training speed
than Bi-LSTM, while the latter boasts higher
prediction accuracy

4-4

State-of-the-A
rt Report: SEC

TIO
N

 4

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

• Utilizing doc2vec for vector representation
enhances training speed and generalization
ability compared to word2vec

• Multilevel symbolization proves beneficial
in enhancing the precision of neural network
models

These lessons can serve as practical guidelines for
both researchers and engineers in navigating the
complexities of neural network selection and data
preprocessing for software vulnerability detection
[57].

The growing complexity of software applications
and the imperative to minimize vulnerabilities
have already spurred the creation (and limited
adoption) of ML techniques for identifying software
vulnerabilities in source code. However, many of
these existing lack the accuracy required for ready
use in an industrial context. One recent study [57]
introduces a novel approach, utilizing an abstract
syntax tree neural network (ASTNN), to identify
and classify software vulnerabilities according
to common weakness enumeration (CWE) types.
The study proceedings follow two key assertions:
(1) ASTNN outperforms previous ML neural
network architectures, and (2) the benchmark
dataset commonly used for ML vulnerability
classification is inadequate for this purpose. The
ASTNN architecture is detailed, and an evaluation
using over 44,000 test cases across 29 CWEs in the
NIST Juliet Test Suite dataset yielded a minimum
accuracy of 88% across all CWEs [58].

4.3 AI-ENHANCED CODING RELIABILITY

Especially since 2022, when large language model-
enabled AI “chatbot” interfaces began receiving an
immense amount of interest and discussion in the
AI space, many commercial engineers have looked
to apply AI directly to coding practice. Doing
so has transformed the approach to coding that
many take, bringing about increased efficiencies
in static analysis, reliability, and defect reduction.
The following examples highlight current projects

available for download and implementation; note
that each is likely to evolve in a dynamic fashion,
given the current, nascent stage of AI-enabled code
enhancement.

GitHub, a leading code hosting platform, has
released (and also uses) CodeQL, an AI-powered
static analysis tool for discovering vulnerabilities
across a codebase. CodeQL employs sophisticated
AI algorithms to automatically identify security
vulnerabilities in code. Beyond detection, it also
suggests fixes and patches, proactively addressing
security concerns for millions of open-source
projects hosted on GitHub. CodeQL contributes
significantly to the overall security of the software
ecosystem by identifying and addressing
vulnerabilities early in the development process.
Using CodeQL to identify a vulnerability promises
to eradicate it and all possible variants “forever”
[59].

Facebook (Meta Platforms, Inc.) has developed
Infer, an AI-based code analysis tool, to enhance
software reliability and prevent issues from
reaching production codebases. Used by a wide
array of both SSC-centric and other commercial
entities (including Amazon Web Services, Uber,
Microsoft, and Sonatype), Infer utilizes static
analysis to identify various programming errors
and potential crashes, even in complex and large-
scale codebases. By catching bugs before they
propagate, Infer helps to maintain high-quality and
stable applications, reducing postrelease bug fixes.
In addition to marketing the Infer service externally,
Facebook runs it continuously within every
code modification for its main user applications,
including Facebook itself (Android/iOS), Facebook
Messenger, Instagram, and others [60].

Developed by Google (Alphabet, Inc.), DeepCode
AI is an AI-driven code review tool that extends
beyond error detection. It provides intelligent
suggestions for code improvements, offering
specific recommendations to developers.
DeepCode AI analyzes code patterns, individual

4-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 4

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

coding styles, and best practices to assist
developers in writing cleaner, more efficient code.
This can not only reduce the likelihood of errors
but can accelerate software package development
overall by automating code enhancements. Built
upon multiple AI models, DeepCode AI has also
been trained specifically on open-source code-
security data. DeepCode is particularly valuable for
optimizing development workflows and reducing
coding errors, ultimately saving time and resources
[61].

IntelliCode, developed by Microsoft and marketed
within its Visual Studio integrated development
environment, enhances the code review process
by offering AI-generated code completion
suggestions and recommendations. IntelliCode
achieves this via continual analysis of coding
patterns, contextual information, code type,
and more; it then generates recommendations
on its assessment of GitHub open-source code
contributions. For instance, IntelliCode detects
repetition in a programmer’s draft code, including
the use of variable (or near-match) names; this
alone removes a common vulnerability, as attackers
can exploit duplicate code in some scenarios to
gain access [62].

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

5-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 5

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

SECTION

05 CONCLUSIONS
As AI-enabled tools of all types continue to find
increasingly rapid purchase in both private industry
and government, their application to cybersecurity
practices in general, and SSC defense in particular,
are almost certain to follow suit. Overall, one of
AI’s most useful capabilities is how well it can filter
through large volumes of data and detect low
signal-to-noise advanced-persistent-threat-like
risks. Markedly better detection will enable faster
prediction speeds and, ultimately, rapid-response
actions. Future work in the AI-enabled SSC space
is likely to investigate the ability to accelerate
behavior-based detections via increased compute,
optimal AIOps, integrated end-to-end workflow,
and dynamic updates for feature engineering. With
the potential addition of automated distributed
training, future tools could easily display the ability
to detect malign cyberactions, based on behavioral
data, while using AI to support near-real-time
alerting.

Effectively managing the intricate and diverse
supply chain within the U.S. government entails a
heavy reliance on an extensive network of suppliers
and vendors providing software components. This
dependence poses challenges in ensuring the
security of these components within the SSC. To
address these security challenges comprehensively,
a combination of technical solutions, robust
security practices, collaborative efforts among
stakeholders, and adherence to industry standards
is imperative.

Prioritizing security within the SSC is crucial for
organizations to mitigate risks and protect against
potential vulnerabilities and attacks. Unfortunately,
federal entities often lack complete visibility into
their SSCs, including details about the origin,
integrity, and security of the components. This
limited visibility makes it difficult to identify
and address potential risks and vulnerabilities.
Moreover, relying on third-party vendors
introduces additional risks related to the security
practices and integrity of the provided software
components.

To enhance SSC security, it is essential to implement
preventive strategies against potential attacks.
This involves establishing a security baseline and
adopting robust behavioral continuous monitoring
practices. Behavioral methods leverage AI models
to forecast, infer, predict, correlate, and identify
likely weaknesses, potential attack vectors, and
avenues of approach within SSC-embedded
software. AI-powered systems can monitor SSCs
in real time, detecting suspicious activities and
unauthorized access.

AI is particularly adept at automating routine
security audits and assessments of SSCs to identify
potential vulnerabilities, risks, and security
control gaps. This proactive approach enables
organizations to address potential exploits and
vulnerabilities promptly, receiving timely alerts
for swift responses to security incidents and
minimizing potential damage. Furthermore,
integrating AI with security coding workflows

5-2

State-of-the-A
rt Report: SEC

TIO
N

 5

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

streamlines the autocompletion and updating of
required compliance practices, enhancing overall
code quality, reducing defects, and improving
efficiency.

6-1

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 R
EF

ER
EN

C
ES

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

1. Defense Innovation Board. “Software Acquisition and
Practices (SWAP) Study, Main Report.” U.S. Department
of Defense, Arlington, VA, https://media.defense.
gov/2019/May/01/2002126693/-1/-1/0/SWAP%20
MAIN%20REPORT.PDF, 3 May 2019.

2. Hughes, C. “NIST Provides Solid Guidance on Software
Supply Chain Security in DevSecOps.” CSO Online,
https://www.csoonline.com/article/655648/nist-
provides-solid-guidance-on-software-supply-chain-
security-in-devsecops.html, 19 October 2023.

3. Comparitech Limited. “Worldwide Software Supply
Chain Attacks Tracker (Updated Daily).” Compairtech,
https://www.comparitech.com/software-supply-chain-
attacks/, 29 September 2023.

4. Red Hat, Inc. “What Is Software Supply Chain Security?”
Red Hat, https://www.redhat.com/en/topics/security/
what-is-software-supply-chain-security, 14 December
2022.

5. Director of National Intelligence. “Software Supply
Chain Attacks.” National Counterintelligence and
Security Center, Washington, DC, https://www.dni.gov/
files/NCSC/documents/supplychain/Software-Supply-
Chain-Attacks.pdf, 21 April 2023.

6. Boyens, J., A. Smith, N. Bartol, K. Winkler, A. Holbrook,
and M. Fallon. “Cybersecurity Supply Chain Risk
Management Practices for Systems and Organizations.”
NIST SP 800-161r1, National Institute for Standards and
Technology, Gaithersburg, MD, https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-161r1.
pdf, May 2022.

7. Thompson, K. “Reflections on Trusting Trust.”
Communications of the ACM, vol. 27, no. 8, https://
dl.acm.org/doi/pdf/10.1145/358198.358210, August
1984.

8. GitHub, Inc. “Catalog of Supply Chain Compromises.”
Cloud Native Computing Foundation, https://github.com/
cncf/tag-security/tree/main/supply-chain-security/
compromises#catalog-of-supply-chain-compromises,
June 2023.

9. Crosignani, M., M. Macchiavelli, and A. F. Silva. “Pirates
Without Borders: The Propagation of Cyberattacks
Through Firms’ Supply Chains.” Staff Report No. 937,
Federal Reserve Bank of New York, New York, NY,
https://www.newyorkfed.org/medialibrary/media/
research/staff_reports/sr937.pdf, July 2021.

10. U.S. Government Accountability Office. “Cybersecurity:
Federal Response to SolarWinds and Microsoft
Exchange Incidents.” GAO-22-104746, report to

congressional addressees, Washington, DC, https://
www.gao.gov/products/gao-22-104746, 13 January
2022.

11. Nicastro, L. A. “The U.S. Defense Industrial Base:
Background and Issues for Congress.” R47751,
Congressional Research Service, Washington, DC,
https://s3.documentcloud.org/documents/24039377/
r47751.pdf, 12 October 2023.

12. 117th Congress. “Creating Helpful Incentives to
Produce Semiconductors (CHIPS) Act of 2022.”
Pub. L. No. 117–167, 136 Stat. 1366, https://www.
govinfo.gov/content/pkg/PLAW-117publ167/pdf/
PLAW-117publ167.pdf, 9 August 2022.

13. Ebert, M. “Attacking the Cyber Supply Chain Problem
at Its Source—Shifting Way Left!” U.S. Army Redstone
Test Center, presentation before the National Cyber
Summit, Huntsville, AL, https://eventpower-res.
cloudinary.com/files/v1/media/National%20Cyber%20
Security%20S/23ncs/presentation_files/Attacking%20
the%20Cyber%20Suppl/ozpdhpkmsmrgc6nt5o9q.pdf/
Attacking_the_Cyber_Supply_Chai_Dr_Jacob_Cox_Jr_
NCS_2023_C-SCRM_Final, 20 September 2023.

14. Thompson, L. “Five Reasons Software Is Eclipsing
Hardware in Pentagon Technology Plans.” Forbes,
https://www.forbes.com/sites/lorenthompson/2023/
08/14/five-reasons-software-is-eclipsing-hardware-in-
pentagon-technology-plans/?sh=2ba6bd8d6c7e,
14 August 2023.

15. Center for Strategic & International Studies. “Significant
Cyber Incidents.” CSIS, https://www.csis.org/programs/
strategic-technologies-program/significant-cyber-
incidents, October 2023.

16. Greenberg, A. “China-Linked Hackers Breached a
Power Grid—Again.” Wired, https://www.wired.com/
story/china-redfly-power-grid-cyberattack-asia/,
12 September 2023.

17. Pavithran, A. “The Pentagon Is Running out of Time to
Get Zero Trust Right.” C4ISRnet, https://www.c4isrnet.
com/opinion/2023/10/17/the-pentagon-is-running-
out-of-time-to-get-zero-trust-right/, 17 October 2023.

18. The White House. “National Cybersecurity Strategy
Implementation Plan.” Washington, DC, https://
www.whitehouse.gov/wp-content/uploads/2023/
07/National-Cybersecurity-Strategy-Implementation-
Plan-WH.gov_.pdf, 13 July 2023.

19. U.S. Department of Defense. “Summary: 2023 Cyber
Strategy of the Department of Defense.” Arlington, VA,
https://media.defense.gov/2023/Sep/12/2003299076/

REFERENCES

6-2

State-of-the-A
rt Report: REFEREN

C
ES

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

-1/-1/1/2023_DOD_Cyber_Strategy_Summary.PDF,
September 2023.

20. U.S. Government Accountability Office. “Information
and Communications Technology: DoD Needs to Fully
Implement Foundational Practices to Manage Supply
Chain Risks.” GAO-23-105612, report to congressional
committees, Washington, DC, https://www.gao.gov/
assets/gao-23-105612.pdf, 18 May 2023.

21. National Institute for Standards and Technology.
“Framework for Improving Critical Infrastructure
Cybersecurity, Version 1.0.” Gaithersburg, MD, https://
www.nist.gov/system/files/documents/cyberframework/
cybersecurity-framework-021214.pdf, 12 February 2014.

22. Otto, G. “NIST Wants More Feedback on Cybersecurity
Framework.” FedScoop, https://fedscoop.com/nist-
looking-for-addtional-feedback-on-cybersecurity-
framework/, 10 December 2015.

23. U.S. Executive Office of the President. “Strengthening
the Cybersecurity of Federal Networks and Critical
Infrastructure.” National Archives, Executive Order
13800, 82 FR 22391, https://www.federalregister.gov/
documents/2017/05/16/2017-10004/strengthening-
the-cybersecurity-of-federal-networks-and-critical-
infrastructure, 11 May 2017.

24. Souppaya, M., K. Scarfone, and D. Dodson. “Secure
Software Development Framework (SSDF) Version 1.1:
Recommendations for Mitigating the Risk of Software
Vulnerabilities.” NIST SP 800-218, National Institute for
Standards and Technology, Gaithersburg, MD, https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-218.pdf, February 2022.

25. Boyens, J., C. Paulsen, N. Bartol, K. Winkler, and J. Gimbi.
“Key Practices in Cyber Supply Chain Risk Management:
Observations From Industry.” NISTIR 8276, National
Institute for Standards and Technology, Gaithersburg,
MD, https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.
8276.pdf, February 2021.

26. National Institute for Standards and Technology.
“Framework for Improving Critical Infrastructure
Cybersecurity, Version 1.1.” Gaithersburg, MD, https://
nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.
pdf, 16 April 2018.

27. National Institute for Standards and Technology. “The
NIST Cybersecurity Framework 2.0: Initial Public Draft.”
NIST CSWP 29, Gaithersburg, MD, https://nvlpubs.nist.
gov/nistpubs/CSWP/NIST.CSWP.29.ipd.pdf, 8 August
2023.

28. Sonatype, Inc. “9th Annual State of the Software Supply
Chain.” Sonatype, https://www.sonatype.com/state-
of-the-software-supply-chain/introduction, 3 October
2023.

29. Zahan, N., T. Zimmermann, P. Godefroid, B. Murphy,
C. Maddila, and L. Williams. “What Are Weak Links
in the npm Supply Chain?” Proceedings of the 44th
International Conference on Software Engineering:
Software Engineering in Practice, pp. 331–340, May 2022.

30. Okafor, C., T. R. Schorlemmer, S. Torres-Arias, and
J. C. Davis. “Sok: Analysis of Software Supply Chain
Security by Establishing Secure Design Properties.”
Proceedings of the 2022 ACM Workshop on Software
Supply Chain Offensive Research and Ecosystem Defenses,
pp. 15–24, November 2022.

31. Ellison, R. J., J. B. Goodenough, C. B. Weinstock, and
C. Woody. “Evaluating and Mitigating Software Supply
Chain Security Risks.” CMU/SEI-2010-TN-016, Carnegie
Mellon University Software Engineering Institute,
Pittsburgh, PA, 1 May 2010.

32. Cybersecurity and Infrastructure Security Agency.
“Defending Against Software Supply Chain Attacks.”
Arlington, VA, https://www.cisa.gov/sites/default/files/
publications/defending_against_software_supply_
chain_attacks_508_1.pdf, April 2021.

33. Simpson, S. (editor). “Fundamental Practices for
Secure Software Development: A Guide to the Most
Effective Secure Development Practices in Use Today.”
Software Assurance Forum for Excellence in Code,
https://safecode.org/publication/SAFECode_Dev_
Practices1008.pdf, 8 October 2008.

34. McGraw, G. “Building Security in Maturity Model.”
https://owasp.org/www-pdf-archive/Bsimm09.pdf,
October 2009.

35. U.S. Department of Homeland Security, Software
Assurance (SwA) Processes and Practices Working
Group. “Process Reference Model for Assurance
Mapping to CMMI-DEV V1.2.” 23 June 2008.

36. Open Web Applications Security Project. “Software
Assurance Maturity Model.” https://wiki.owasp.org/
index.php/OWASP_SAMM_Project, 2023.

37. U.S. Executive Office of the President. “Improving
Critical Infrastructure Cybersecurity.” National Archives,
Executive Order 13636, 78 FR 11739, https://www.
federalregister.gov/documents/2013/02/19/2013-
03915/improving-critical-infrastructure-cybersecurity,
12 February 2013.

REFERENCES, continued

6-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 R
EF

ER
EN

C
ES

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

38. National Institute for Standards and Technology. “NIST
Drafts Major Update to Its Widely Used Cybersecurity
Framework.” NIST News, https://www.nist.gov/news-
events/news/2023/08/nist-drafts-major-update-its-
widely-used-cybersecurity-framework, 8 August 2023.

39. Chandramouli, R., F. Kautz, and S. T. Arias. “Strategies
for the Integration of Software Supply Chain Security
in DevSecOps CI/CD Pipelines.” NIST/CSRC, NIST
SP 800-204D, initial public draft, https://csrc.nist.
gov/pubs/sp/800/204/d/ipd, 30 August 2023.

40. Center for Internet Security. “CIS Critical Security
Control 4: Secure Configuration of Enterprise Assets
and Software.” CIS, CIS CSC 4, https://www.cisecurity.
org/controls/secure-configuration-of-enterprise-
assets-and-software, November 2022.

41. Information Systems Audit and Control Association.
“COBIT: An ISACA Framework.” Schaumburg, IL,
https://www.isaca.org/resources/cobit, accessed
December 2023.

42. International Society of Automation. “Security for
Industrial Automation and Control Systems Part 2-1:
Establishing an Industrial Automation and Control
Systems Security Program.” ISA-62443-2-1:2009,
Triangle Park, NC, https://www.isa.org/products/isa-
62443-2-1-2009-security-for-industrial-automat, 2009.

43. International Organization for Standardization
and International Electrotechnical Commission.
“Information Technology: Security Techniques—
Information Security Management Systems—
Requirements.” ISO/IEC 27001:2013, https://
webstore.ansi.org/preview-pages/ISO/preview_
ISO+IEC+27001-2013.pdf, 1 October 2013.

44. National Institute for Standards and Technology.
“Security and Privacy Controls for Information Systems
and Organizations.” NIST SP 800-53, Revision 4, NIST,
https://csrc.nist.gov/pubs/sp/800/53/r4/final, updated
30 April 2013.

45. International Society of Automation. “Security for
Industrial Automation and Control Systems Part 3-3:
System Security Requirements and Security Levels.”
ANSI/ISA-62443-3-3:2013, Triangle Park, NC, https://
www.isa.org/products/ansi-isa-62443-3-3-99-03-03-
2013-security-for-indu, 2013.

46. Center for Internet Security. “Incident Response and
Management.” CSF Tools, CIS CSC 19, https://csf.tools/
reference/critical-security-controls/version-7-1/csc-19/,
accessed December 2023.

47. Center for Internet Security. “Penetration Tests and Red
Team Exercises.” CSF Tools, CIS CSC 20, https://csf.tools/
reference/critical-security-controls/version-7-1/csc-20/,
accessed December 2023.

48. National Institute for Standards and Technology.
“National Online Informative Reference Program.”
NIST, https://csrc.nist.gov/projects/olir/informative-
reference-catalog#/, accessed December 2023.

49. U.S. Executive Office of the President. “Improving the
Nation’s Cybersecurity.” National Archives, Executive
Order 14028, 86 FR 26633, https://www.federalregister.
gov/documents/2021/05/17/2021-10460/improving-
the-nations-cybersecurity, 12 May 2021.

50. in-toto Authors. “What Is in-toto?” in-toto,
https://in-toto.io/in-toto/, accessed 20 July 2023.

51. National Institute for Standards and Technology.
“Strategies for the Integration of Software Supply Chain
Security in DevSecOps CI/CD Pipelines: NIST SP 800-
204D, ipd Available for Comment.” NIST, https://csrc.
nist.gov/News/2023/nist-sp-800-204d-ipd-available-
for-comment, 30 August 2023.

52. The Linux Foundation. “What Is SLSQ? Supply-Chain
Levels for Software Artifacts, or SLSA (Salsa).” SLSA,
https://slsa.dev/, 2023.

53. Shetty, S. “Assured Cyber Supply Chain Provenance
Using Permissioned Blockchain.” I: The Grainger College
of Engineering Information Trust Institute, University
of Illinois Urbana-Champaign, https://iti.illinois.edu/
credc/researchactivity/assured-cyber-supply-chain-
provenance-using-permissioned-blockchain, 2020.

54. Shetty, S., C. A. Kamhoua, and L. L. Njilla (editors).
Blockchain for Distributed Systems Security. Hoboken,
NJ: John Wiley & Sons, April 2019.

55. Bandara, E., S. Shetty, A. Rahman, and R. Mukkamala.
“Let’sTrace—Blockchain, Federated Learning and
TUF/In-ToTo Enabled Cyber Supply Chain Provenance
Platform.” Presented at the 2021 IEEE Military
Communications Conference (MILCOM), San Diego,
CA, https://ieeexplore.ieee.org/document/9653024,
29 November–2 December 2021.

56. Nath, P., J. R. Mushahary, U. Roy, M. Brahma, and
P. K. Singh. “AI and Blockchain-Based Source Code
Vulnerability Detection and Prevention System for
Multiparty Software Development.” Computers and
Electrical Engineering, vol. 106, https://doi.org/
10.1016/j.compeleceng.2023.108607, March 2023.

REFERENCES, continued

6-4

State-of-the-A
rt Report: REFEREN

C
ES

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

57. Tang, G., L. Meng, H. Wang, S. Ren, Q. Wang, L. Yang,
and W. Cao. “A Comparative Study of Neural Network
Techniques for Automatic Software Vulnerability
Detection.” 2020 International Symposium on
Theoretical Aspects of Software Engineering (TASE),
pp. 1–8, Hangzhou, China, https://doi.org/10.1109/
TASE49443.2020.00010, 2020.

58. Partenza, G., T. Amburgey, L. Deng, J. Dehlinger,
and S. Chakraborty. “Automatic Identification of
Vulnerable Code: Investigations With an AST-Based
Neural Network.” 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC),
pp. 1475–1482, Madrid, Spain, https://doi.org/10.1109/
COMPSAC51774.2021.00219, 2021.

59. GitHub, Inc. “CodeQL.” GitHub, https://codeql.github.
com/, accessed 1 December 2023.

60. Facebook, Inc. “Infer: A Tool to Detect Bugs in Java and
C/C++?Objective-C Code Before It Ships.” Infer, https://
fbinfer.com/, 1 December 2023.

61. Snyk Limited. “Snyk Powered by DeepCode AI.” Snyk,
https://snyk.io/platform/deepcode-ai/, 1 December
2023.

62. Microsoft. “Type Less, Code More: Visual Studio
IntelliCode Brings AI Assistance Directly Into Your
Personal Development Flow.” Microsoft/Visual Studio,
https://visualstudio.microsoft.com/services/intellicode/,
1 December 2023.

REFERENCES, continued

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

This Page Intentionally Left Blank

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

State-of-the-A
rt Report

This Page Intentionally Left Blank

Cybersecurity & Information Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t

This Page Intentionally Left Blank

Applications of Artificial Intelligence (AI) for Protecting Software Supply Chains (SSCs) in the Defense Industrial Base (DIB)
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

APPLICATIONS OF
ARTIFICIAL INTELLIGENCE
(AI) FOR PROTECTING
SOFTWARE SUPPLY CHAINS
(SSCS) IN THE DEFENSE
INDUSTRIAL BASE (DIB)
Abdul Rahman

CSIAC-BCO-2024-499

	ABOUT CSIAC
	THE Author
	ABSTRACT
	Acknowledgments
	executive summary
	Introduction
	1.1 Defining SSC Attacks
	1.2 SSCs and the Defense Industrial Base
	1.3 Securing SSC
	1.4 Report Overview

	data management strategies
	2.1 Open-Source Packages
	2.2 Attack Surface Management and Threat Modeling
	2.3 Application Code Security
	2.4 NIST Cybersecurity Framework

	feature development
	3.1 Secure Software Updates: Development, Security, and Operations (DevSecOps); Artificial Intelligence for Internet Technolocy Operations (AIOps); and Machine Learning Operations (MLOps)
	3.2 Push Protection
	3.3 Other SSC Frameworks
	3.3.1 General Frameworks
	3.3.2 SBOM and Pipeline Bill of Materials (PBOM)

	applications of ai
	4.1 AI Models With Blockchain Integration With SSC Frameworks
	4.2 Software Vulnerability Analysis and Detection Using AI
	4.3 AI-Enhanced Coding Reliability

	conclusions

